23 research outputs found

    Anthropogenic- and natural sources of dust in peatland during the Anthropocene

    Get PDF
    As human impact have been increasing strongly over the last decades, it is crucial to distinguish human-induced dust sources from natural ones in order to define the boundary of a newly proposed epoch - the Anthropocene. Here, we track anthropogenic signatures and natural geochemical anomalies in the Mukhrino peatland, Western Siberia. Human activity was recorded there from cal AD 1958 (±6). Anthropogenic spheroidal aluminosilicates clearly identify the beginning of industrial development and are proposed as a new indicator of the Anthropocene. In cal AD 1963 (±5), greatly elevated dust deposition and an increase in REE serve to show that the geochemistry of elements in the peat can be evidence of nuclear weapon testing; such constituted an enormous force blowing soil dust into the atmosphere. Among the natural dust sources, minor signals of dryness and of the Tunguska cosmic body (TCB) impact were noted. The TCB impact was indirectly confirmed by an unusual occurrence of mullite in the pea

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Seasonal patterns of testate amoeba diversity, community structure and species-environment relationships in four Sphagnum-dominated peatlands along a 1300 m altitudinal gradient in Switzerland

    No full text
    Altitudinal gradients are useful to study the potential effects of climate change on ecosystems. Historically, studies on elevation gradients have primarily focused on macro-organisms and ecosystem processes, while microorganisms have been mostly ignored despite their ubiquity and functional importance. We studied the temporal (about every two months from June 2008 until May 2009) variation of testate amoeba communities in four Sphagnum-dominated peatlands along a 1300 m elevation gradient in the Swiss Mountains (580-1880m) in relation to water table depth and hydrochemistry with special focus on dissolved organic carbon (DOC), a useful proxy for changes in C-cycling in peatlands. The lowest site had significantly (P < 0.01) lowest testate amoeba density, species richness. The highest site had highest testate amoeba density (38 ind.mg-1 28 dry mass of Sphagnum). Seasonal fluctuations in testate amoeba species richness and diversity were not consistent among sites but density tended to peak in spring at all sites, autumn in the three highest sites and mid-winter in the upper two sites. In a redundancy analysis (RDA) community structure was more strongly correlated to altitude (33.8% of variance explained in living community) than to soil hydrological and hydro-chemical variables (together explaining 16.2% of variance). In a partial RDA with altitude used as covariable, the four sites were separated by DOP, DOC, DON, pH and average depth to water table. The abundance of high trophic level testate amoeba species (shell-aperture over their body size >0.20; i.e. primarily predators of protists and micro-metazoa) as well as the community size structure increased from lowest to highest elevation (respectively by 3.7x and 6x) and followed the seasonal patterns of total density, while DOC, DON, and DOC/DON decreased with elevation. These results agree with previously reported alteration of peatland microbial food chains in response to experimental warming, suggesting that climate-induced changes in microbial community structure (here a shortening of microbial food chains) represent a mechanism controlling the carbon balance of peatlands

    Reconstructing climate change and ombrotrophic bog development during the last 4000years in northern Poland using biotic proxies, stable isotopes and trait-based approach

    Get PDF
    In this study, we present a record spanning the last 4000 years from a Baltic bog (Kusowskie Bagno) in northern Poland. Using numerous biotic and abiotic proxies, such as testate amoebae (depth to water table reconstructions), stable carbon isotopes (13C), plant macrofossils (proxies for local vegetation and mire surface wetness), pollen and spores (proxies for regional vegetation and human impact), we reconstructed and identified the regional hydro-climatic signal of Kusowskie Bagno bog and compared it to other bog records around the Baltic Sea. Our aims were to: 1) combine the species traits of bryophytes and testate amoebae, and more common proxies (isotopes, plant micro-and macro-remains) to infer past peatland development, 2) compare the hydro-climatic signal of Kusowskie Bagno bog to existing records around the Baltic Sea. We found that Kusowskie Bagno bog was very wet during the last 4000 years, and even drainage and peat exploitation had not disturbed its hydrology in northern part in the last 200 years. Carbon isotopes and plant macrofossils were significantly related to specific traits of testate amoebae, which in turn reflected the water table changes over the last 4000 years. Kusowskie Bagno recorded at least the following wet shifts: AD 250, 550, 850, 1250 and 1700, while wet conditions occurred during the Migration period at ca AD 550. Furthermore, the testate amoeba-based quantitative wetness reconstruction in Kusowskie Bagno bog resembles the pattern observed in other sites around the Baltic, i.e., Estonia, Finland, Ireland, northern Britain and the 7500-year record from the StÄ…ĆŒki bog, northern Poland. Our results provided statistically validated evidence that interactions between plant and microbe need to be more considered further to reconstruct past hydrological. This is the first study of past hydro-climatic changes in peatlands based upon a trait-based approach

    Soil microbial structure and enzymatic activity along a plant cover in Victoria Land (continental Antarctica).

    No full text
    In continental Antarctica, autotrophs are exclusively represented by cyanobacteria, algae, lichens and mosses. Consequently, Antarctic soil communities are expected to be rather simple and primarily dominated by microorganisms. Recently, a change in abundance of mosses and lichens has been observed in continental Antarctica in response to an increase of the active permafrost layer, but the implication of this change to soil micro-organisms remains little known. Here we aim to clarify to what extent the abundance of mosses and lichens affects soil biogeochemistry in Victoria Land, with a particular focus on soil microbial abundance and associated soil enzymatic activity. To achieve this aim, we assessed the structure of soil microbiome and the activity of hydrolytic C, N, and P enzymes along a gradient in soil physico-chemical conditions and plant cover. Moss cover strongly relates to the amount of soil organic carbon (SOC), soil water and nutrient content. Soils with higher content of organic carbon were characterized by higher microbial biomass and showed a relatively higher abundance of fungi as compared to bacteria. More specifically, PLFAs biomarkers for Actinomycetes and Gram-positive bacteria were mainly associated to soils with lower SOC. In order to sustain a higher microbial biomass, total activity of hydrolytic enzymes increased with increasing SOC content. Eco-enzymatic stoichiometry, based on C to P and C to N ratios, indicates a higher investment in N- and P-hydrolytic enzymes (ratio &lt; 1), particularly at low SOC content. Oppositely, an increase in C-hydrolytic enzyme activity (ratio 481) was observed with increasing accumulation of organic carbon. Such a result seems to indicate a stronger role of soil pH at low SOC on enzymatic stoichiometry (abiotic control) whereas with increasing accumulation of organic matter the enzymatic stoichiometry is more affected by microbial metabolism (biotic control)

    In situ resistance, not immigration, supports invertebrate community resilience to drought intensification in a Neotropical ecosystem

    No full text
    While future climate scenarios predict declines in precipitations in many regions of the world, little is known of the mechanisms underlying community resilience to prolonged dry seasons, especially in 'naive' Neotropical rainforests. Predictions of community resilience to intensifying drought are complicated by the fact that the underlying mechanisms are mediated by species' tolerance and resistance traits, as well as rescue through dispersal from source patches. We examined the contribution of in situ tolerance-resistance and immigration to community resilience, following drought events that ranged from the ambient norm to IPCC scenarios and extreme events. We used rainshelters above rainwater-filled bromeliads of French Guiana to emulate a gradient of drought intensity (from 1 to 3.6 times the current number of consecutive days without rainfall), and we analysed the post-drought dynamics of the taxonomic and functional community structure of aquatic invertebrates to these treatments when immigration is excluded (by netting bromeliads) or permitted (no nets). Drought intensity negatively affected invertebrate community resistance, but had a positive influence on community recovery during the post-drought phase. After droughts of 1 to 1.4 times the current intensities, the overall invertebrate abundance recovered within invertebrate life cycle durations (up to 2 months). Shifts in taxonomic composition were more important after longer droughts, but overall, community composition showed recovery towards baseline states. The non-random patterns of changes in functional community structure indicated that deterministic processes like environmental filtering of traits drive community re-assembly patterns after a drought event. Community resilience mostly relied on in situ tolerance-resistance traits. A rescue effect of immigration after a drought event was weak and mostly apparent under extreme droughts. Under climate change scenarios of drought intensification in Neotropical regions, community and ecosystem resilience could primarily depend on the persistence of suitable habitats and on the resistance traits of species, while metacommunity dynamics could make a minor contribution to ecosystem recovery. Climate change adaptation should thus aim at identifying and preserving local conditions that foster in situ resistance and the buffering effects of habitat features

    Combining short-term manipulative experiments with long-term palaeoecological investigations at high resolution to assess the response of Sphagnum peatlands to drought, fire and warming

    No full text
    Northern hemisphere peatlands are substantial carbon stores. However, recent climate change and human impacts (e.g., drainage and atmospheric nutrient deposition) may trigger the emission of their stored carbon to the atmosphere. Biodiversity losses are also an important consequence of those changes. Therefore, there is a need to recognise these processes in space and time. Global change experiments are often conducted to improve our understanding of the potential responses of various ecosystems to global warming and drought. Most of the experiments carried out in peatlands are focused on carbon balance and nitrogen deposition. Nevertheless, it is still unclear how fast peatlands respond to temperature changes and water-table lowering in the continental climate setting. This is important because continental regions account for a significant proportion of all northern hemisphere peatlands. A combination of short-term and long-term approaches in a single research project is especially helpful because it facilitates the correct interpretation of experimental data. Here we describe the CLIMPEAT project - a manipulative field experiment in a Sphagnum-dominated peatland supported by a high-resolution multi-proxy palaeoecological study. The design of the field experiment (e.g., treatments), methodology and biogeographical setting are presented. We suggest it is beneficial to support field experiments with an investigation of past environmental changes in the studied ecosystem, as human impacts during the past 300 years have already caused substantial changes in ecosystem functioning which may condition the response in experimental studies

    Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types

    Get PDF
    Abstract Tundra ecosystems hold large stocks of soil organic matter (SOM), likely due to low temperatures limiting rates of microbial SOM decomposition more than those of SOM accumulation from plant primary productivity and microbial necromass inputs. Here we test the hypotheses that distinct tundra vegetation types and their carbon supply to characteristic rhizosphere microbes determine SOM cycling independent of temperature. In the subarctic Scandes, we used a three-way factorial design with paired heath and meadow vegetation at each of two elevations, and with each combination of vegetation type and elevation subjected during one growing season to either ambient light (i.e., ambient plant productivity), or 95% shading (i.e., reduced plant productivity). We assessed potential above- and belowground ecosystem linkages by uni- and multivariate analyses of variance, and structural equation modelling. We observed direct coupling between tundra vegetation type and microbial community composition and function, which underpinned the ecosystem’s potential for SOM storage. Greater primary productivity at low elevation and ambient light supported higher microbial biomass and nitrogen immobilisation, with lower microbial mass-specific enzymatic activity and SOM humification. Congruently, larger SOM at lower elevation and in heath sustained fungal-dominated microbial communities, which were less substrate-limited, and invested less into enzymatic SOM mineralisation, owing to a greater carbon-use efficiency (CUE). Our results highlight the importance of tundra plant community characteristics (i.e., productivity and vegetation type), via their effects on soil microbial community size, structure and physiology, as essential drivers of SOM turnover. The here documented concerted patterns in above- and belowground ecosystem functioning is strongly supportive of using plant community characteristics as surrogates for assessing tundra carbon storage potential and its evolution under climate and vegetation changes

    Functional Traits 2.0: The power of the metabolome for ecology

    No full text
    A major aim of ecology is to upscale attributes of individuals to understand processes at population, community and ecosystem scales. Such attributes are typically described using functional traits, that is, standardised characteristics that impact fitness via effects on survival, growth and/or reproduction. However, commonly used functional traits (e.g. wood density, SLA) are becoming increasingly criticised for not being truly mechanistic and for being questionable predictors of ecological processes. This Special Feature reviews and studies how the metabolome (i.e. the thousands of unique metabolites that underpin physiology) can enhance trait-based ecology and our understanding of plant and ecosystem functioning. In this Editorial, we explore how the metabolome relates to plant functional traits, with reference to life-history trade-offs governing fitness between generations and plasticity shaping fitness within generations. We also identify solutions to challenges of acquiring, interpreting and contextualising metabolome data, and propose a roadmap for integrating the metabolome into ecology. We next summarise the seven studies composing the Special Feature, which use the metabolome to examine mechanisms behind plant community assembly, plant-organismal interactions and effects of plants and soil micro-organisms on ecosystem processes. Synthesis. We demonstrate the potential of the metabolome to improve mechanistic and predictive power in ecology by providing a high-resolution coupling between physiology and fitness. However, applying metabolomics to ecological questions is currently limited by a lack of conceptual, technical and data frameworks, which needs to be overcome to realise the full potential of the metabolome for ecology
    corecore