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Anthropogenic- and natural sources 
of dust in peatland during the 
Anthropocene
B. Fiałkiewicz-Kozieł1, B. Smieja-Król2, M. Frontasyeva3, M. Słowiński4,5, K. Marcisz1,6, 
E. Lapshina7, D. Gilbert8, A. Buttler9,10, V. E. J. Jassey9,10, K. Kaliszan1,6, F. Laggoun-Défarge11,  
P. Kołaczek1 & M. Lamentowicz1,6

As human impact have been increasing strongly over the last decades, it is crucial to distinguish human-
induced dust sources from natural ones in order to define the boundary of a newly proposed epoch 
- the Anthropocene. Here, we track anthropogenic signatures and natural geochemical anomalies in 
the Mukhrino peatland, Western Siberia. Human activity was recorded there from cal AD 1958 (±6). 
Anthropogenic spheroidal aluminosilicates clearly identify the beginning of industrial development 
and are proposed as a new indicator of the Anthropocene. In cal AD 1963 (±5), greatly elevated dust 
deposition and an increase in REE serve to show that the geochemistry of elements in the peat can be 
evidence of nuclear weapon testing; such constituted an enormous force blowing soil dust into the 
atmosphere. Among the natural dust sources, minor signals of dryness and of the Tunguska cosmic 
body (TCB) impact were noted. The TCB impact was indirectly confirmed by an unusual occurrence of 
mullite in the peat.

Ombrotrophic peatlands are a well-known trap of atmospheric dust, trace elements and pollutants1–4 originating 
from both natural sources (wild fires, volcanic eruptions, dust storms, meteorite impacts)5–8 and anthropogenic 
sources (industry, mine, transport, nuclear tests)1,9–13. Knowledge about past pollution in Russia is very limited as 
no high-resolution peat profile of past pollution, or annual flux of trace elements and dust, has been undertaken 
to date.

The Siberian peatlands, one of the largest in Russia, are exceptionally interesting to explore for past geo-
chemical signals because of their distance from any important pollution source. They are a sensitive recep-
tor of global changes in atmospheric-dust deposition. Studies of the geochemistry of Siberian peatlands have 
focused predominantly on the probable impact site of the Tunguska Cosmic Body or on the pollution related to 
Tomsk- and Norilsk heavy industry (Fig. 1)14–16. Furthermore, no existing studies identify the recently proposed 
Anthropocene period, the period in which human activity dramatically altered all earth systems17–19. Here, we 
provide a first high-resolution record of dust flux as evidence for geochemical anomalies of both anthropogenic- 
and natural origin in the Mukhrino peatland in Western Siberia (Fig. 1). The Mukhrino is located over 1000 km 
from any large industrial center (Norilsk, Chelabinsk, Barnaul; Fig. 1). The developing oil industry in the nearest 
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town (20 km; Khanty-Mansiysk) with a population below 100,000, seems to have a limited significance in the 
present context. The long distance from power plants, the ombrotrophy, the high-resolution record of palaeoeco-
logical changes all make Mukhrino a suitable place to assess human impact and the extent of airborne-particle 
migration – and to potentially define the boundary of the Anthropocene.

Results and Discussion
The human influence on the amount and composition of atmospheric dust deposited on Mukhrino peatland 
can be seen to start in the late 1950 s (Figs 2 and 3). Since then, epsilon Nd values are less negative (−​6.7; −​7.1) 
compared to those from lower layers of the peat core and 87Sr/86Sr values are less radiogenic (0.70999 ±​ 0.000009 
−​ 0.710269 ±​ 0.000017) (Table 1, Fig. 2). Less negative epsilon Nd values and lower 87Sr/86Sr values in modern 
Chinese dust is ascribed by Li et al.20 as due to possible addition of anthropogenic particles. Unfortunately, val-
ues of Nd and Sr isotopes of anthropogenic material from Russia are not available. Looking into shift in values 
of epsilon Nd and 87S/86Sr ratio after cal AD 1953 (±​7) (Fig. 2) we can hypothesized, that it is the anthropogenic 
impact. In the layer dated cal AD 1958 (±​6), the first spheroidal aluminosilicate particles (SAP) appear and 
remain throughout the younger part of the profile, directly confirming the addition of technogenic particles to 
the deposited dust (Fig. 3). This is linked with the appearance of other chronomarkers, e.g., spheroidal carbona-
ceous particles (SCP), whose numbers have rapidly increased everywhere after the second world war19. SAP are 
a typical inorganic, glassy component of fly ash generated during industrial coal combustion21–25 and are found 
even in regions located far from industrial centres, e.g., Greenland (Summit area)26 and the glaciers of Tianshan27. 

Figure 1.  Location of the Mukhrino mire (grey circle) and the main sources of dust. The map was 
created using a graphical programme (Corel Draw X6, no. DR18C22VSWS5XTKC5CCB2XT8LJ7V4KH6J). 
Contour map previously used in Lamentowicz et al.35. Data of nuclear weapon tests were taken from Nagdy, 
Roser31. ‘Nuclear Weapons’. Published online at OurWorldInData.org. https://ourworldindata.org/nuclear-
weapons/[Online Resource]. Factory symbol – main industrial centers in Siberia. Yellow circle with star – site of 
Tunguska air burst and explosion.

Figure 2.  Changes in dust fluxes, carbon accumulation rate (CAR) and water depth table (DWT) during 
the last 800 years. 

https://ourworldindata.org/nuclear-weapons/
https://ourworldindata.org/nuclear-weapons/
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Ranging in size from <​1 up to tens of micrometers, the majority are ideal spheres, monolithic, and dense, porous 
or hollow. They result from the softening, melting and vitrification of minerals such as clays, chlorite, feldspars, 
etc., during coal combustion in power stations21. Although a wide compositional variation is reported for these 
spherical fly-ash particles23, it is the SiO2 and Al2O3 rich varieties that are mainly encountered in peatlands; these 
are highly resistant to dissolution28,29. EDS spectra of individual SAP in the Mukhrino peat confirm SiO2 and Al2O3 
as the main components, with addition of Na, K, Mg, Ti and Fe. Particles of <​9 μ​m (average diameter 2.7 μ​m;  
n =​ 120) confirm a distant source for the industrial dust28,30.

The dust flux, derived from the lithogenic, conservative element scandium, varies in the peat profile 
from 1–12.4 g m−2 y−1 (Fig. 2). The dust deposition rate shows a dramatic increase immediately after the first 
SAP appearance, reaching a maximum in cal AD 1963 (±​5), and falling again soon after cal AD 1966 (±​5). 
Atmospheric weapon testing was likely the main reason for what was the highest dust flux recorded during the 
last 800 years, a flux unrelated to any changes in water level at that time (Fig. 2). In cal AD 1963 (±​5), the max-
imum value of the REE accumulation rate (AR) (SmAR – 0.13 g m−2 y−1; Fig. 2) and a maximum enrichment of 
U (EFU – 1.65; Fig. 3) is especially notable. This finding is in line with the observed peak in concentration of La, 

Figure 3.  Changes in concentrations and enrichment factors of Ni, Zn, Cu and U. SEM images of 
technogenic spheroidal aluminosilicates (SAP). SAP are proposed as a new marker for Anthropocene; they 
appear only during industrial times.

Nr of sample Depth (cm) 143/144Nd (0) 2σ εNd 87/86Sr (0) 2σ

A

1 27–28 0.51229 ±​0.000010 −​6.8 0.710103 ±​0.000020

2 29–30 0.512273 ±​0.000020 −​7.1 0.71009 ±​0.000014

3 35–36 0.512292 ±​0,000009 −​6.7 0,710269 ±​0.000017

4 43–44 0,512292 ±​0,000008 −​6.7 0,710173 ±​0.000010

5 45–46 0.512289 ±​0,000010 −​6.8 0,710192 ±​0.000013

6 51–52 0.512285 ±​0.000009 −​6.9 0.70999 ±​0.000009

7 53–54 0.512267 ±​0.000010 −​7.2 0.71025 ±​0.000010

8 56–57 0.512236 ±​0.000010 −​7.8 0.710857 ±​0.000009

9 57–58 0.512232 ±​0.000010 −​7.9 0.711281 ±​0.000022

10 59–60 0.512264 ±​0.000010 −​7.3 0.711642 ±​0.000010

11 61–62 0.512204 ±​0.000010 −​8.5 0.712061 ±​0.000010

Sample 143/144Nd (0) ε​Nd 87/86Sr (0) Reference

B

Siberian trap 86 m (Kh) 0.51282 3.67 0.70466 Lightfoot et al.61

Sandstone (eastern Siberia) 0.511943 −​13.5 — Podkovyrov et al.62

Sandstone (eastern Siberia) 0.512046 −​11.5 — Podkovyrov et al.62

Horquin Sandy land 0.512295 −​6.7 0.717102 Chen et al.63

Onquin Daga Sandy Land 0.512295 −​6.7 0.716586 Chen et al.63

Dune sand Gurbantunggut desert 0.512332–0.512420 −4.3 – −6.0 0.711048–0.711902 Rao et al.64

Russian crude oil — — 0.7083–0.7104 Yasnyginaa et al.65

Upper Continental Crust 0.513077 −​10.2 0.704636 Hart et al.66; Esser & Turekian67

Table 1.   (A) Isotopic signature of peat samples from the Mukhrino peatland, (B) Examples of natural- and 
anthropogenic Sr and Nd signatures.
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Th and U, and increased activities of 238Pu and 137Cs, in a peat layer dated cal AD 1963 in peatlands of the Tomsk 
region15 as well with maximum of above ground nuclear tests in Russia (AD 1962)31. The most powerful nuclear 
test was Tsar Bomba detonated at Novaya Ziemlya in 196132. Conversely, decreasing enrichment factors for Cu, 
Ni and Zn reflect the insignificance of pollution from heavy industry at that time in Mukhrino (Fig. 3). These 
observations further strengthen the point that nuclear tests were the reason for the first human-induced increase 
in dust fallout in Western Siberia. Here we show that nuclear tests not only caused the release of radionuclides, but 
also affected geochemical cycles of many elements, especially REE, and accelerated dust deposition.

Metals crucial for the Siberia region, i.e., Cu and Ni, exploited and processed in Norilsk and Tomsk, show con-
stant enrichment-factor values (52–95 and 1.7–4.4, respectively; Fig. 3) in the period cal AD 1953 (±​5) −​1996 (±​2).  
Small fluctuations in uranium might indicate minor influence of coal combustion or use of crude oil. A more 
obvious rise in the input of several metals (Ti, Cu, Ni, and Zn) is observed as late as in the year cal AD 2000 (±​2) 
(Fig. 3). The increase of Ti dust flux at that time (Fig. 2) can be linked to the intensification of industrial activities 
in AD 2000. Lower enrichments of Zn, Cu in cal AD 1990 (±​2) correspond to the fact that the economic system 
was weakened by a set of reforms during that time (Perestroika)33,34. Only in the Khanty-Mansi Autonomous 
District in AD 1998–2003 did emission increase by a factor of two and oil production by 37%33.

A depth to water table (DWT) reconstruction based on testate amoebae35 shows that dry conditions dom-
inated up to cal AD 1750 (±​62), with a maximum at the turn of 15th and 16th centuries (Fig. 2). This was fol-
lowed by low carbon accumulation rates (CAR), declined signature of epsilon Nd (−​8,5) and elevated 87Sr/86Sr 
(0.712061 ±​ 0.000010), similar to the signature of Chinese loess (Table 1; Sr and Nd isotopic data not available 
for Siberian loess). The supply of loess to dust is supported also by a characteristic value of Th/U equal 2.7–2.9, 
similar to the value described for loess ≈​ 2.836. The decline in DWT can be associated with the Little Ice Age, con-
sistent with climatic estimations conducted for central- and eastern Europe, and with the pattern of CAR across 
the Northern Hemisphere and southern Siberia37. A slight increase in dust deposition rates (Fig. 2), and a higher 
charcoal content (Fig. 4) correlate with the lowest water level in the peatland, and confirm the natural inforce of 
dryness as a driver of dust generation.

The time of abrupt change in CAR (from 22.3–244 g m−​2 y−​1), dust flux and several other proxies are noted 
in the modelled age of the 57–58 cm layer (cal AD 1882 ±​ 43–1920 ±​ 28) and is in good agreement with the date 
of the Tunguska cosmic body event (TCB) which happened in June 1908 (Fig. 2) and is the best known and most 
mysterious extra-terrestrial event recorded in Central Russia; the amount of cosmic material dispersed into the 
atmosphere has been estimated at ca 1 million tons38,39.

Indirect evidence of TCB-induced dust fallout in the Mukhrino peatland is an unusual occurrence of mullite 
in the “Tunguska layer” and its absence in adjacent layers (Supplementary Table 2). Mullite is a high-temperature 
phase that forms due to the decomposition and transformation of clay minerals at temperatures >​1100 °C40. The 
mineral, together with microspherules, scoria like objects (SLOs) and other high temperature minerals (corun-
dum, suessite) lacking in the ‘Tunguska layer’, has been deemed evidence of a Younger Dryas meteorite impact41. 
In the ‘Tunguska layer’, mullite may be a product of melting of dust and soil minerals at extremely high tempera-
tures induced by the TCB explosion. A distinct peak in microscopic charcoal contents (Fig. 4), indicative of dis-
tant fires, has been recorded in this layer together with an increased concentration of Se (Supplementary Table 1), 
a biogenic element released during forest fires42. It is known that the TCB impact set 2000 km2 of taiga on fire. The 
main stream of dust formed during the TCB explosion passed westwards through Siberia, Europe and America7. 
As to the best of our knowledge, there were no local fires during this time in the vicinity of the Mukhrino peat-
land, it is proposed that post TCB fires could have influenced the dust flux and the element concentration in this 
peat layer. The layer is characterised by the highest Th/U value (3.9; Supplementary Table 1) which would indicate 
a change in the supply of natural dust.

Figure 4.  Changes of microscopic- and macroscopic charcoal concentrations and influx in the Mukhrino 
mire. Increased fire activity (peaks of microscopic charcoal) was probably caused by the Tunguska cosmic body 
event.
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Our reconstruction of changes in the flux and composition of dust recorded in a Siberian peat profile is an 
important contribution to the global discussion about the boundary of the Anthropocene and the markers defin-
ing this new geological period.

The remote location of the Mukhrino peatland makes it a valuable record of natural- and anthropogenic dust 
sources, and especially for the differentiation of new markers of anthropogenic activity.

Prior to cal AD 1901(±​37), the supply of dust was climatically driven in the main. Then, an abrupt increase of 
REE, a rise of microcharcoal concentrations and the occurrence of natural mullite is indicative of the influence of 
theTunguska Cosmic Body impact on dust influx.

The occurrence of spheroidal aluminosilicates (SAP) from cal AD 1958 (±6) onwards is clear evidence of 
technogenic particles in the dust supply; anthropogenic activities were, from then on, an additional source of 
dust. Our results show SAP occurrence in remote places and offer important evidence to recent discussion about 
Global Stratotype Section and Point43,44. In considerations of a Global Standard Stratigraphic Age, as spheroi-
dal aluminosilicates are resistant in peaty- and soil environments and easy to distinguish, they may constitute, 
together with SCP an unambiguous global marker of the industry-induced epoch.

The influence of Siberian heavy industry on dust geochemistry has been observed as late as cal AD 2000 (±​2), 
when economic development considerably increased after the Perestroika-related stagnancy.

Nuclear weapons tests had the main influence on REE in the Mukhrino peat profile. In Siberia, the year cal 
AD 1963 (±​5) is marked by the highest dust input to the peat record. In addition to the release of radionuclides, 
the accumulation rate and enrichment of REE can be an important indicator defining nuclear tests as drivers of 
increased atmospheric dust.

Methods
The Mukhrino mire is located about 20 km from Khanty-Mansiysk (60°54′​N, 68°42′​E) on the eastern bank of the 
Irtysh River in the middle taiga area of Western Siberia. A detailed site description is given in Lamentowicz et al.35 
and Kremenetski et al.45. In summer 2012, a 1 m peat core was collected, sliced into 1-cm samples and divided 
into subsamples for various analyses. Biotic proxies (pollen analysis, macrofossil analysis, testate amoebae analy-
sis), bulk density, ash content, charcoal and chronology, described in Lamentowicz et al.35, show the hydrological 
dynamics, vegetation changes and fire history of the Siberia region. In this study, we used Sr and Nd isotopes, 
geochemistry, mineralogy and charcoal analysis combined with the published chronology based on C14 age-depth 
model (cal AD y ±​ σ​) and depth to water table (DWT)35 to reveal changes in dust flux, composition and sources.

Element concentrations.  To assess levels of pollution, 33 dry peat samples (1 g) were determined by epi-
thermal neutron activation analysis (ENAA) for 38 main elements and REE (Supplementary Table 1). ENAA was 
performed at the pulsed fast reactor IBR-2 at the Frank Laboratory of Neutron Physics, JINR, Dubna, Russia. 
Characteristics of the neutron flux density in the two irradiation channels (one cadmium-screened) equipped 
with the pneumatic system and registration of gamma spectra are given elsewhere46. The gamma-spectra of the 
induced activity were processed using software developed in the Frank Laboratory of Neutron Physics47. Pelleted 
samples with masses of ca 0.3 g were heat-sealed in polyethylene foil bags for short-time irradiation and in alumi-
num cups for long-time irradiation. To determine medium- and long lived isotopes, namely, Na, Sc, Cr, Fe, Co, 
Ni, Zn, As, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Cs, Ba, La, Ce, Nd, Sm, Hf, Ta, W, Au, Hg, Th and U, cadmium-screened 
channel 1 at a resonance neutron fluency rate of 3.31 ×​ 1012 n cm−2 s−1 was used. Samples were irradiated for 
100 hours, repacked and, using high purity germanium detectors, measured twice after 4–5 days and 20–23 days 
of decay. Measurement times were 45 min and 2 hours, respectively. To determine the short-lived isotopes Mg, Al, 
Cl, K, Ca, Ti, V, Mn, Br, In and I, irradiation channel 2 with a thermal neutron fluency rate of 1.6 ×​ 1013 n cm−2 s−1 
was used. Samples were irradiated for 3 min and measured twice after 3–5 min and 20 min of decay for 3 min 
and 9–10 min, respectively. Element contents were determined on the basis of certified reference materials 
and flux comparators47. Quality was assured by use of the Certified reference material IAEA-336 (Lichen), and 
NIST Standard reference materials 1632c (SRM Trace Elements in Coal (bitominous), 2710 (Highly Elevated 
Trace Element Concentrations (Montana Soil) and BCR (EU Community Bureau of Reference 667 (estuarine 
Sediment) which were irradiated simultaneously with the studied peat samples. Results were obtained with high 
precision and acceptable accuracy (from 3 to 15%). High precision – reproducibility of quality controls over long 
periods of time (years) is often better than 2% relative standard deviation (RSD).

For normalization, enrichment factors were calculated using Sc as a conservative element and reference values 
for the upper continental crust48. Element accumulation rates (g cm−2 y−1) were calculated according to the for-
mula: element concentration* bulk density* peat accumulation rate. Dust flux (g m−2 y−1) was calculated accord-
ing to the formula: (element concentration (Sc, Ti)/concentration of element in Upper Continental Crust)* bulk 
density *peat accumulation rate*1000049. Results are detailed in Supplementary Table 1.

Mineral composition.  To identify the sources of dust, the sizes, morphologies and chemical compositions 
of dust particles in peat samples were analyzed using Philips XL 30 ESEM and FESEM ZEISS SUPRA 35 scanning 
electron microscopes, both equipped with an energy dispersive system (EDS). A small portion of peat sample 
(~0.25 cm3) was air dried, gently homogenized, fixed to a carbon tab and carbon coated. Both backscattered 
electron (BSE) images carrying compositional information and secondary-electron (SE) images showing particle 
morphologies and shapes were used. BSE images enabled easy detection of all inorganic particles as they appear 
lighter in the dark background of peat organic matter29. XRD data of ashed peat samples (550 °C overnight; 
washed in 1 M HCl for 15 min) were obtained using a Panalytical X’Pert PRO MPD PW 3040/60 equipped with 
Theta-Theta geometry. Quantitative determination of crystalline phases was done by Rietveld refinement of pow-
der diffraction data (HighScore +​ software). The XRD results are given in Supplementary Table 2.
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Sr and Nd isotopes.  To trace the sources of atmospheric dust, 143Nd/144Nd and 87Sr/86Sr values were 
determined in the Isotope Laboratory at UAM. About 1 gram of peat powder was burned at 550 °C overnight. 
Ash was dissolved on a hot plate (~100 °C for three days) in closed PFA vials using a mixture of concentrated 
hydrofluoric- and nitric acids (4:1). Miniaturized chromatographic techniques described by Pin et al.50 were 
applied for Nd and Sr separation, using some modifications in column size and reagent concentrations intro-
duced by Dopieralska51. Strontium was loaded with a TaCl5 activator on a single Re filament, whereas Nd were 
measured in a Re double-filament configuration. Sr and Nd were analyzed in dynamic collection mode on a 
Finnigan MAT 261 mass spectrometer.

During the course of this study, the AMES standard yielded 143Nd/144Nd =​ 0.512129 ±​ 7 (2σ​ mean on 
twenty-four analyses). The NBS 987 Sr standard gave 87Sr/86Sr of 0.710230 ±​ 10 (2σ​ mean on twenty-two analyses).  
87Sr/86Sr values were normalized to 86Sr/88Sr =​ 0.1194 and 143Nd/144Nd values to 146Nd/144Nd =​ 0.7219. Total pro-
cedure blanks were less than 35 pg for Nd and Sm, and less than 80 pg for Sr. Epsilon Nd (ε​Nd) was calculated 
using standard formula: ε​Nd sample =​ (143/144Ndsample-0,512638)/0,512638)*10000. The data are given in Table 1.

Charcoal analysis.  Microscopic charcoal was used as a proxy for regional fire activity (mainly frequency)52,53 
and macroscopic charcoal to reconstruct local fires54,55. Microscopic charcoal analysis was carried out for the 
entire length of the profile. Samples were prepared following standard procedures for pollen analysis with addi-
tion of Lycopodium tablet as an indicator of concentration56,57. Microscopic charcoal particles (>10 μ​m) were 
counted as by Tinner and Hou58 and Finsinger and Tinner59. In the 50–64 cm section of the core, macroscopic 
charcoal analysis (particles >​ 100 μ​m; 1 cm3 peat samples), followed the method of Whitlock and Larsen60. 
Microscopic- and macroscopic charcoal accumulation rates (CHARmicro, CHARmacro; particles/cm2/yr) were cal-
culated using the charcoal concentrations (CHACmicro, CHACmacro) and peat accumulation rates inferred from 
the age-depth model.

References
1.	 Shotyk, W. History of atmospheric lead deposition since 12,370 14C yr BP recorded in a peat bog profile, Jura Mountains, 

Switzerland. Science 281, 1635–1640 (1998).
2.	 Le Roux, G. et al. Volcano- and climate-driven changes in atmospheric dust sources and fluxes since the Late Glacial in Central 

Europe. Geology 40(4), 335–338 (2012).
3.	 Vanneste, H. et al. Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America. Scientific Reports 

5, 11670 (2015).
4.	 Fiałkiewicz-Kozieł, B. et al. Peatland Microbial Communities as Indicators of the Extreme Atmospheric Dust Deposition. Water Air 

Soil Pollution 226 (2015).
5.	 Nriagu, J. O. A global assessment of natural sources of atmospheric trace metals. Nature 338, 47–49 (1989).
6.	 Gladysheva, O. G. On the problem of the Tunguska meteorite material. Solar System Research. 41, 314–321 (2007).
7.	 Kusky, T. Asteroids and meteorites: Catastrophic collisions with Earth. The hazardous Earth (2009).
8.	 Vanneste, H. et al. Elevated dust deposition in Tierra del Fuego (Chile) resulting from Neoglacial Darwin Cordillera glacier 

fluctuations. Journal of Quaternary Science 31(7), 713–722 (2016).
9.	 Turco, R. P. et al. Nuclear winter: global consequences of multiple nuclear explosions. Science 222, 1283–1292 (1983).

10.	 Nriagu, J. O. & Pacyna, J. M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333, 
134–139 (1988).

11.	 De Vleeschouwer, F. et al. Anthropogenic impacts in North Poland over the last 1300 years - A record of Pb, Zn, Cu, Ni and S in an 
ombrotrophic peat bog. The Science of the Total Environment 407(21), 5674–5684 (2009).

12.	 Allan, M. et al. Mid- and late Holocene dust deposition in Western Europe: The Misten peat bog (Hautes Fagnes – Belgium). Climate 
of the Past 9, 2285–2298 (2013).

13.	 Baklanov, A. A. et al. Aspects of atmospheric pollution in Siberia. In: Regional Environmental Changes in Siberia and Their Global 
Consequences. Groisman, P. Y., Gutman, G. (Eds.). 303–346 (2013).

14.	 Tositti, M. et al. A multitracer study of peat profiles from Tunguska, Siberia. Global and Planetary Change 53, 278–289 (2006).
15.	 Mezhibor, A., Arbuzov, S., Rikhvanov, L. & Gauthier-Lafaye, F. History of the Pollution in Tomsk Region (Siberia, Russia) According 

to the Study of High-Moor Peat Formations. International Journal of Geosciences 2, 493–501 (2011).
16.	 Stepanova, V. A. et al. Elemental composition of peat profiles in western Siberia: Effect of the micro-landscape, latitude position and 

permafrost coverage. Applied Geochemistry 53, 53–70 (2015).
17.	 Crutzen, P. J. & Stoemer, E. F. The “Anthropocene”. IGBP Newsletter 41, 17–18 (2000).
18.	 Ellis, E. C., Fuller, D. Q., Kaplan, J. O. & Lutters, W. G. Dating the Anthropocene: Towards an empirical global history of human 

transformation of the terrestrial biosphere. Elementa: Science of the Anthropocene 1, 000018 (2013).
19.	 Swindles, G. T. Spheroidal carbonaceous particles are a defining stratigraphic marker for the Anthropocene. Scientific Reports 5, 

10264 (2015).
20.	 Li, G., Chen, J., Ji, J., Yang, J. & Conway, T. M. Natural and anthropogenic sources of East Asian dust. Geology 37(8), 727–730 (2009).
21.	 Vassilev, S. V. & Vassileva, C. G. Mineralogy of combustion wastes from coal-fired power stations. Fuel Processing Technology 47, 

261–280 (1996).
22.	 Sokol, E. V., Maksimova, N. V., Volkova, N. I., Nigmatulina, E. N. & Frenkel, A. E. Hollow silicate microspheres from fly ashes of the 

Chelyabinsk brown coals (South Urals, Russia). Fuel Processing Technology 67, 35–52 (2006).
23.	 Giere, R., Carleton, L. E. & Lumpkin, G. R. Micro- and nanochemistry of fly ash from a coal-fired power plant. American 

Mineralogist 88, 1853–1865 (2003).
24.	 Goodarzi, F. Morphology and chemistry of fine particles emitted from a Canadian coal-fired power plant. Fuel 85, 273–280 (2006).
25.	 Kutchko, B. G. & Kim, A. G. Fly ash characterization by SEM-EDS. Fuel 85, 2537–2544 (2006).
26.	 Drab, E., Gaudichet, A., Jaffrezo, J. L. & Colin, J. L. Mineral particles content in recent snow at Summit (Greenland). Atmospheric 

Environment 36, 5365–5376 (2002).
27.	 Zhang, X. L., Wu, G. J., Yao, T. D., Zhang, C. L. & Yue, Y. H. Characterization of individual fly ash particles in surface snow at Urumqi 

Glacier No. 1, Eastern Tianshan. Chinese Science Bulletin 56, 3464–3473 (2011).
28.	 Smieja-Król, B. & Fiałkiewicz-Kozieł, B. Quantitative determination of minerals and anthropogenic particles in some Polish peat 

occurrences using a novel SEM point-counting method. Environmental Monitoring and Assessment 186, 2573–2587 (2014).
29.	 Smieja-Król, B., Fiałkiewicz-Kozieł, B., Sikorski, J. & Palowski, B. Heavy metal behavior in peat - a mineralogical perspective. The 

Science of the Total Environment 408, 5924–5931 (2010).
30.	 Lawrence, C. R. & Neff, J. C. The contemporary physical and chemical flux of aeolian dust: A synthesis of direct measurements of 

dust deposition. Chemical Geology 267, 46–63 (2009).



www.nature.com/scientificreports/

7Scientific Reports | 6:38731 | DOI: 10.1038/srep38731

31.	 Nagdy, M. & Rosen, M. Nuclear Weapons. https://ourworldindata.org/nuclear-weapons/ (2016).
32.	 Khalturin, V. I., Rautian, T. G., Richards, P. G. & Leith, W. S. A Review of Nuclear Testing by the Soviet Union at Novaya Zemlya, 

1955–1990. Science and Global Security 13(1), 1–42 (2005).
33.	 Bityukova, V. R. Dynamic of atmospheric pollution by stationary sources. Regional research of Russia 1, 394–398 (2011).
34.	 Cooper, J. The Russian economy twenty years after the end of the socialist economic system. Journal of Eurasian Studies 4, 55–64 

(2013).
35.	 Lamentowicz, M. et al. Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-

resolution, ombrotrophic peat archive. Quaternary Research 84, 312–325 (2015).
36.	 Gallet, S., Jahn, B. M., Lanoe, B. V., Dia, A. & Rossello, E. Loess geochemistry and its implications for particle origin and composition 

of the upper continental crust. Earth and Planetary Science Letters 156(3–4), 157–172 (1998).
37.	 Hildebrandt, S. et al. Tracing the North Atlantic decadal-scale climate variability in a late Holocene pollen record from southern 

Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 426, 75–84 (2015).
38.	 Bronshten, V. A. The Nature of the Tunguska Meteorite. Meteoritics & Planetary Science 34, 723–728 (1999).
39.	 Xie, L. W., Hou, Q. L., Kolesnikov, E. M. & Kolesnikova, N. V. Geochemical Evidence for the Characteristics of the 1908 Tunguska 

Explosion Body in Siberia, Russia. Science in China (Ser. D) 44, 1029–1037 (2011).
40.	 Castelein, O., Guinebretiere, R., Bonnet, J. P. & Blanchart, P. Shape, size and composition of mullite nanocrystals from a rapidly 

sintered kaolin. Journal of the European Ceramic Society 21, 2369–2376 (2001).
41.	 Bunch, T. E. et al. Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. 

Proceedings of the National Academy of Sciences of the United States of America 109, E1903–E1912 (2012).
42.	 Samsonov, Y. N. Particulate emissions from fires in central Siberian Scots pine forests. Canadian Journal of Forest Research 35, 

2207–2217 (2005).
43.	 Lewis, S. L. & Maslin M. A. Defining the Anthropocene. Nature 519, 171–180 (2015).
44.	 Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351 (2016).
45.	 Kremenetski, K. V. et al. Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and Late 

Quaternary history. Quaternary Science Reviews 22, 703–723 (2003).
46.	 Frontasyeva, M. V. Neutron activation analysis for the Life Sciences. A review. Physics of Particles and Nuclei 42(2), 332–378 (2011).
47.	 Pavlov, S. S., Dmitriev, A. Yu. & Frontasyeva, M. V. Automation system for neutron activation analysis at the reactor IBR-2, Frank 

Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia. Journal of Radioanalytical and Nuclear 
Chemistry, doi: 10.1007/s10967-016-4864-8 in press (2016).

48.	 Rudnick, R. L. & Gao, S. Composition of the Continental Crust. In: Treatise on Geochemistry. Holland, H. D. & Turekian, K. K. 
(Editors) Elsevier, Amsterdam. 3, 1–64 (2004).

49.	 Fagel, N. et al. Deciphering human-climate interactions in an ombrotrophic peat record: REE, Nd and Pb isotope signatures of dust 
supplies over the last 2500 years (Misten bog, Belgium). Geochimica et Cosmochimica Acta 135, 288–306 (2014).

50.	 Pin, Ch., D., Briot, Ch., Bassin & Poitrasson, F. Concomitant separation of strontium and samarium-neodymium for isotopic 
analysis in silicate samples, based on specific extraction chromatography. Analytica Chimica Acta 298, 209–222 (1994).

51.	 Dopieralska, J. Neodymium isotopic composition of conodonts as a palaeoceanographic proxy in the Variscan oceanic system, Ph.D. 
thesis, pp. 111, Justus-Liebig-University, Giessen (2003).

52.	 Tinner, W. et al. Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland 
since AD 1920. The Holocene 8, 31–42 (1998).

53.	 Gardner, J. J. & Whitlock, C. Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA, and its 
relevance for fire-history studies. The Holocene 11, 541–549 (2001).

54.	 Clark, J. S. Stratigraphic charcoal analysis on petrographic thin sections: application to fire history in northwestern Minnesota. 
Quaternary Research 30, 81–91 (1988).

55.	 Conedera, M. et al. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. 
Quaternary Science Reviews 28, 555–576 (2009).

56.	 Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615–621 (1971).
57.	 Berglund, B. E. & Ralska-Jasiewiczowa, M. Pollen analysis and pollen diagrams. In: Handbook of Holocene Paleoecology and 

Paleohydrology ed. Berglund BE (Chichester-Toronto: Wiley & Sons Ltd.) pp. 455–484 (1986).
58.	 Tinner, W. & Hu, F. S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for 

fire reconstruction. The Holocene 13, 499–505 (2003).
59.	 Finsinger, W. & Tinner, W. Minimum count sums for charcoal-concentration estimates in pollen slides: accuracy and potential 

errors. The Holocene 15, 293–297 (2005).
60.	 Whitlock, C. & Larse, C. Charcoal as a fire proxy., Tracking environmental change using lake sediments. Terrestrial, algal, and 

siliceous indicators. Eds Smol, J. P., Birks, H. J. B. & Last, W. M. (Kluwer, Dordrecht) pp. 75–97 (2001).
61.	 Lightfoot, P. C. et al. Remobilisation of continental lithosphere by a mantle plume: major-, trace – element, and Sr-, Nd-, Pb- isotope 

evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia. Contributions to Mineralogy and Petrology 
114, 171–188 (1993).

62.	 Podkovyrov, V. N. et al. Provenance and Source Rocks of Riphean Sandstones in the Uchur–Maya Region (East Siberia): Implications 
of Geochemical Data and Sm–Nd Isotopic Systematics. Stratigraphy and Geological Correlation 15(1), 41–56 (2007).

63.	 Chen, J. et al. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust. Geochimica et 
Cosmochimica Acta 71, 3904–3914 (2007).

64.	 Rao, W. et al. Nd-Sr isotope geochemistry of fine-grained sands in the basin-type deserts, West China: Implications for the source 
mechanism and atmospheric transport. Geomorphology 246, 458–471 (2015).

65.	 Yasnyginaa, T. A. et al. The ICP-MS Determination of Rare Earths and Other Metals in Baikal Crude Oil: Comparison with Crude 
Oils in Siberia and the Russian Far East. Doklady Earth Sciences 411(8), 1237–1240 (2006).

66.	 Hart, S. R., Blusztajn, J., Dick, H. J. B., Meyer, P. S. & Muehlenbachs, K. The fingerprint of seawater circulation in a 500-meter section 
of ocean crust gabbros. Geochimica et Cosmochimica Acta 63, 4059–4080 (1999).

67.	 Esser, B. K. & Turekian, K. K. The Osmium isotopic composition of the continental crust. Geochimica et Cosmochimica Acta 57, 
3093–3104 (1993).

Acknowledgements
The research was funded by grant 2011/01/D/ST10/02579 from the Polish National Centre of Science (NCN) (PI: 
Barbara Fiałkiewicz-Kozieł). We acknowledge the support of the International Network for Terrestrial Research 
and Monitoring in the Arctic (INTERACT) that funded the project: “Functioning of Siberian mire ecosystems 
and their response to climate changes” (CliMireSiber) (PI: Fatima Laggoun-Defarge) and Grant PSPB-013/2010 
through the Swiss Contribution to the enlarged European Union (CLIMPEAT, www.climpeat.pl) (PI: Mariusz 
Lamentowicz). This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution 
(ICLEA) of the Helmholtz Association and Science and Research Funds for 2015–2016, allocated to a co-financed 
international project (No. 3500/ICLEA/15/2016/0). We thank Dr Mirosława Pawlyta for SEM help and dr Tomasz 

https://ourworldindata.org/nuclear-weapons/
http://www.climpeat.pl


www.nature.com/scientificreports/

8Scientific Reports | 6:38731 | DOI: 10.1038/srep38731

Krzykawski for XRD analyses. Professor Richard Hoover (Athens State University, Alabama, USA) and Dr. 
Padraig Kennan (University College Dublin, Ireland) are thanked for discussion and language improvement. We 
also wish to thank Dr Francois de Vleeschouwer, Dr. Gaël Le Roux (ECOLAB, Université de Toulouse, CNRS, 
INPT, UPS, Toulouse, France) and Prof. Zdzisław Bełka (UAM, Poznań, Poland) for discussion.

Author Contributions
Idea of this study was developed by B.F.-K. and M.L. Collection of peat core was done by M.S., E.L, D.G., A.B., 
F.L.-D. and M.L., peat subsampling by M.S. and M.L., mineralogical analyses and their interpretation by B.S.-K., 
microscopic- and macroscopic charcoal concentrations by K.M., elemental analysis by M.F. and testate amoebae-
based depth to water-table reconstruction by K.K., M.L. M.S. prepared Figure 1, B.S.-K. Figures 2 and 3 and K.M. 
Figure 4. B.F.-K. interpreted the data with the assistance of all authors who contributed with discussions and/or 
text. The text was written mainly by B.F.-K., B.S.-K and M.L. and edited by all authors.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Fiałkiewicz-Kozieł, B. et al. Anthropogenic- and natural sources of dust in peatland 
during the Anthropocene. Sci. Rep. 6, 38731; doi: 10.1038/srep38731 (2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Fialkiewicz
	Fialkiewicz_Koziel
	Anthropogenic- and natural sources of dust in peatland during the Anthropocene

	Results and Discussion

	Methods

	Element concentrations. 
	Mineral composition. 
	Sr and Nd isotopes. 
	Charcoal analysis. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Location of the Mukhrino mire (grey circle) and the main sources of dust.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Changes in dust fluxes, carbon accumulation rate (CAR) and water depth table (DWT) during the last 800 years.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Changes in concentrations and enrichment factors of Ni, Zn, Cu and U.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Changes of microscopic- and macroscopic charcoal concentrations and influx in the Mukhrino mire.
	﻿Table 1﻿﻿. ﻿  (A) Isotopic signature of peat samples from the Mukhrino peatland, (B) Examples of natural- and anthropogenic Sr and Nd signatures.




 
    
       
          application/pdf
          
             
                Anthropogenic- and natural sources of dust in peatland during the Anthropocene
            
         
          
             
                srep ,  (2016). doi:10.1038/srep38731
            
         
          
             
                B. Fiałkiewicz-Kozieł
                B. Smieja-Król
                M. Frontasyeva
                M. Słowiński
                K. Marcisz
                E. Lapshina
                D. Gilbert
                A. Buttler
                V. E. J. Jassey
                K. Kaliszan
                F. Laggoun-Défarge
                P. Kołaczek
                M. Lamentowicz
            
         
          doi:10.1038/srep38731
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep38731
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep38731
            
         
      
       
          
          
          
             
                doi:10.1038/srep38731
            
         
          
             
                srep ,  (2016). doi:10.1038/srep38731
            
         
          
          
      
       
       
          True
      
   




