310 research outputs found

    A continuum model of gas flows with localized density variations

    Get PDF
    We discuss the kinetic representation of gases and the derivation of macroscopic equations governing the thermomechanical behavior of a dilute gas viewed at the macroscopic level as a continuous medium. We introduce an approach to kinetic theory where spatial distributions of the molecules are incorporated through a mean-free-volume argument. The new kinetic equation derived contains an extra term involving the evolution of this volume, which we attribute to changes in the thermodynamic properties of the medium. Our kinetic equation leads to a macroscopic set of continuum equations in which the gradients of thermodynamic properties, in particular density gradients, impact on diffusive fluxes. New transport terms bearing both convective and diffusive natures arise and are interpreted as purely macroscopic expansion or compression. Our new model is useful for describing gas flows that display non-local-thermodynamic-equilibrium (rarefied gas flows), flows with relatively large variations of macroscopic properties, and/or highly compressible fluid flows

    Genetic Mapping and Functional Studies of a Natural Inhibitor of the Insulin Receptor Tyrosine Kinase: The Mouse Ortholog of Human α2-HS Glycoprotein

    Get PDF
    Fetuin/α2-HS glycoprotein (α2-HSG) homologs have been identified in several species including rat, sheep, pig, rabbit, guinea pig, cattle, mouse and human. Multiple physiological roles for these homologs have been suggested, including ability to bind to hydroxyapatite crystals and to specifically inhibit the tyrosine kinase (TK) activity of the insulin receptor (IR). In this study we report the identification, cloning, and characterization of the mouse Ahsg gene and its function as an IR-TK inhibitor. Genomic clones derived from a mouse Svj 129 genomic library were sequenced in order to characterize the intron–exon organization of the mouse Ahsg gene, including an 875 bp subclone containing 154 bp upstream from the transcription start site, the first exon, and part of the first intron. A second genomic subclone harboring a 3.45 kb Bgl II fragment contained exons 2, 3 and 4 in addition to two adjacent elements within the first intron-a repetitive element of the B1 family (92 bp) and a 271 bp tract of (T,C)n * (A,G)n. We have mapped mouse Ahsg at 16 cM adjacent to the Diacylglycerol kinase 3 (Dagk3) gene on chromosome 16 by genotyping interspecific backcross panels between C57BL/6J and Mus spretus. The position is syntenic with human chromosome 3q27, where the human AHSG gene resides. Using recombinant mouse α2-HSG expressed from a recombinant baculovirus, we demonstrate that mouse α2-HSG inhibits insulin–stimulated IR autophosphorylation and IR-TKA in vitro. In addition, mouse α2-HSG (25μg/ml) completely abolishes insulin-induced DNA synthesis in H-35 rat hepatoma cells. Based on the sequence data and functional analysis, we conclude that the mouse Ahsg gene is the true ortholog of the human AHSG gene

    Return of the EMC Effect: Finite Nuclei

    Full text link
    A light front formalism for deep inelastic lepton scattering from finite nuclei is developed. In particular, the nucleon plus momentum distribution and a finite system analog of the Hugenholtz-van Hove theorem are presented. Using a relativistic mean field model, numerical results for the plus momentum distribution and ratio of bound to free nucleon structure functions for Oxygen, Calcium and Lead are given. We show that we can incorporate light front physics with excellent accuracy while using easily computed equal time wavefunctions. Assuming nucleon structure is not modified in-medium we find that the calculations are not consistent with the binding effect apparent in the data not only in the magnitude of the effect, but in the dependence on the number of nucleons.Comment: 11 pages, 6 figure

    Real-Time and Post-Processed Orbit Determination and Positioning

    Get PDF
    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data

    A new environmentally resistant cell type from Dictyostelium

    Get PDF
    This paper describes the serendipitous discovery and first characterization of a new resistant cell type from Dictyostelium, for which the name aspidocyte (from aspis: Greek for shield) is proposed. These cells are induced from amoebae by a range of toxins including heavy metals and antibiotics, and were first detected by their striking resistance to detergent lysis. Aspidocytes are separate, rounded or irregular-shaped cells, which are immotile but remain fully viable; once the toxic stress is removed, they revert to amoeboid cells within an hour. Induction takes a few hours and is completely blocked by the protein synthesis inhibitor cycloheximide. Aspidocytes lack a cell wall and their resistance to detergent lysis is active, requiring continued energy metabolism, and may be assisted by a complete cessation of endocytosis, as measured by uptake of the dye FM1-43. Microarray analysis shows that aspidocytes have a distinct pattern of gene expression, with a number of genes up-regulated that are predicted to be involved in lipid metabolism. Aspidocytes were initially detected in a hypersensitive mutant, in which the AMP deaminase gene is disrupted, suggesting that the inductive pathway involves AMP levels or metabolism. Since aspidocytes can also be induced from wild-type cells and are much more resistant than amoebae to a membrane-disrupting antibiotic, it is possible that they are an adaptation allowing Dictyostelium cells to survive a sudden onslaught of toxins in the wild

    Observation Versus Intervention for Low-Grade Intracranial Dural Arteriovenous Fistulas

    Get PDF
    BACKGROUND: Low-grade intracranial dural arteriovenous fistulas (dAVF) have a benign natural history in the majority of cases. The benefit from treatment of these lesions is controversial. OBJECTIVE: To compare the outcomes of observation versus intervention for low-grade dAVFs. METHODS: We retrospectively reviewed dAVF patients from institutions participating in the CONsortium for Dural arteriovenous fistula Outcomes Research (CONDOR). Patients with low-grade (Borden type I) dAVFs were included and categorized into intervention or observation cohorts. The intervention and observation cohorts were matched in a 1:1 ratio using propensity scores. Primary outcome was modified Rankin Scale (mRS) at final follow-up. Secondary outcomes were excellent (mRS 0-1) and good (mRS 0-2) outcomes, symptomatic improvement, mortality, and obliteration at final follow-up. RESULTS: The intervention and observation cohorts comprised 230 and 125 patients, respectively. We found no differences in primary or secondary outcomes between the 2 unmatched cohorts at last follow-up (mean duration 36 mo), except obliteration rate was higher in the intervention cohort (78.5% vs 24.1%, P < .001). The matched intervention and observation cohorts each comprised 78 patients. We also found no differences in primary or secondary outcomes between the matched cohorts except obliteration was also more likely in the matched intervention cohort (P < .001). Procedural complication rates in the unmatched and matched intervention cohorts were 15.4% and 19.2%, respectively. CONCLUSION: Intervention for low-grade intracranial dAVFs achieves superior obliteration rates compared to conservative management, but it fails to improve neurological or functional outcomes. Our findings do not support the routine treatment of low-grade dAVFs
    corecore