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Abstract Introduction: We established a method for diagnostic harmonization across multiple studies of pre-
clinical Alzheimer’s disease and validated the method by examining its relationship with clinical sta-
tus and cognition.
Methods: Cognitive and clinical data were used from five studies (N5 1746). Consensus diagnoses
established in each study used criteria to identify progressors from normal cognition to mild cognitive
impairment. Correspondencewas evaluated between these consensus diagnoses and three algorithmic
classifications based on (1) objective cognitive impairment in 21 tests only; (2) a Clinical Dementia
Rating (CDR) of �0.5 only; and (3) both. Associations between baseline cognitive performance and
cognitive change were each tested in relation to progression to algorithm-based classifications.
Results: In each study, an algorithmic classification based on both cognitive testing cutoff scores
and a CDR �0.5 provided optimal balance of sensitivity and specificity (areas under the curve:
0.85–0.95). Over an average 6.6 years of follow-up (up to 28 years), N 5 186 initially cognitively
normal participants aged on average 64 years at baseline progressed (incidence rate: 15.3 people/
1000 person-years). Baseline cognitive scores and cognitive changewere associated with future diag-
nostic status using this algorithmic classification.
Discussion: Both cognitive tests and CDR ratings can be combined across multiple studies to obtain
a reliable algorithmic classification with high specificity and sensitivity. This approach may be appli-
cable to large cohort studies and to clinical trials focused on preclinical Alzheimer’s disease because
it provides an alternative to implementation of a time-consuming adjudication panel.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

In middle-aged and older adults, Alzheimer’s disease
(AD) pathology begins up to 20 years before the onset of
any clinically recognizable symptoms [1,2]. This long
preclinical period provides an opportunity for clinical
trials of interventions designed to slow or even halt
AD-related pathological changes and thereby slow or halt
the onset of cognitive impairment or dementia [3,4].
However, it is essential to understand the natural history of
developing AD to guide decisions about the effectiveness
and safety of interventions in the preclinical stage [5,6].
Although there are natural history studies that seek to
understand relationships between changes in clinical
symptoms, cognition, and biomarkers in preclinical AD,
information derived from each of these studies alone may
be biased by issues related to inclusion/exclusion criteria,
methods for sample ascertainment, sample size, biomarker
methodologies, clinical and cognitive outcome measures,
as well as the length of follow-up and the number of times
individuals are assessed. The preclinical AD consortium
was established to develop methods and strategies for
combining existing longitudinal study data to generate
brain-behavior models that contain minimal bias. These
models can then provide a strong foundation for understand-
ing early AD and developing clinical trials in preclinical AD.

Although combining data across multiple preclinical AD
cohorts can inform the selection of optimal cognitive and
clinical end points for clinical trials of preclinical AD,
such as magnitude of decline in memory among asymptom-
atic individuals or time to progression to the earliest symp-
tomatic stage of AD, commonly operationalized as mild
cognitive impairment (MCI), several challenges must be
overcome before relevant information can be integrated.

The original criteria for MCI [7] emphasized that the
diagnosis of MCI should be based on clinical judgment, as
did the recent revision of the MCI criteria based on the
recommendations of the National Institute on Aging/Alz-
heimer’s Association (NIA-AA) workgroup [8]. Consensus
diagnoses based on this approach have been shown to be
highly feasible within a single study. However, evidence
suggests that different adjudication processes across studies
may cause similar cases to be classified differently depend-
ing on how panel members weight clinical information,
cognitive testing, and informant reports [9–11]. To
improve the standardization of diagnoses for multisite
studies, performance below a specific cut-point on an
episodic memory test has been incorporated into the evalua-
tion, but this has still resulted in groups of individuals who
vary considerably in outcome [12]. Some studies have devel-
oped algorithms that utilize more than one cognitive test
score in generating a diagnosis and have reported that this
improves the likelihood that the individual will progress
from MCI to dementia over time [13]. One method that
can be used to combine data pertaining to classification of
outcomes is to develop and apply a common algorithm to

clinical and cognitive data from the different studies and
thereby overcome study-specific approaches. No study, to
our knowledge, has examined these issues from the perspec-
tive of progression from normal cognition to MCI.

In addition, although most studies agree on the domains
of cognition that warrant study in preclinical AD, they
may choose different neuropsychological tests to operation-
alize those domains. Thus, it is not possible to simply aggre-
gate information from different studies. This challenge can
be addressed by applying approaches to harmonize data
from different neuropsychological tests into a common
metric (e.g., [14–18]).

The purpose of this study was to use prospective clinical
and cognitive data from five cohorts designed to study pre-
clinical AD to develop and validate a common classification
algorithm. Since all participants were cognitively normal at
baseline, it was possible to evaluate each algorithm’s crite-
rion and convergent validity in each study, as well as rela-
tionship between each alternative algorithm and the
change in study-assigned clinical classifications over time.
The relationship between each alternative algorithm and
cognitive decline over time in the pooled sample was further
examined, using cognitive factor scores across the data sets
for general cognitive performance, memory, and executive
function, as well as individual test scores.

2. Methods

2.1. Participants

Clinical and cognitive datawere used from theAdult Chil-
dren Study (ACS, N 5 360; 19), the Australian Imaging,
Biomarker, and Lifestyle study (AIBL study, N 5 767; 20),
theBiomarkers ofCognitiveDeclineAmongNormal Individ-
uals (BIOCARD) study (N5 301; 21), the Baltimore Longi-
tudinal Study ofAging (BLSA,N5 147; 22)–a neuroimaging
substudy, and the Wisconsin Registry for Alzheimer’s Pre-
vention (WRAP, N 5 171; 23). These are subsamples from
the larger cohorts that were selected on the basis of having
comparable imaging and biofluid AD biomarkers available.
The overall sample size was N 5 1746, all of whom were
cognitively normal at enrollment. At the time of these ana-
lyses, participants had been followed for up to 28 years.

Specific details about each data set are available else-
where. Briefly, each study began in the 1990s or early
2000s and recruited cognitively normal participants, most
of whom were middle aged. With the exception of
BLSA, most participants in each study had a first degree
relative with dementia. The overall goal of each of these
studies was to identify early cognitive, imaging, and bio-
specimen markers of progression to MCI. The ACS began
in 2002 at the Charles F. and Joanne Knight Alzheimer’s
Disease Research Center at Washington University in
St. Louis School of Medicine and consists largely of adult
children of persons with AD dementia [19]. The AIBL
study, begun in 2006, recruited older adults with and
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without dementia at baseline to study neuropsychological,
lifestyle, and mood predictors of AD dementia. In analyses
presented here, only those AIBL participants who were
cognitively normal at baseline were included [20]. The
BIOCARD study began in 1995 at the Geriatric Psychiatry
branch of the Intramural Program of the National Institute
of Mental Health; the study was stopped in 2005 and rees-
tablished in 2009 by a research team at the Johns Hopkins
School of Medicine [21]. The BLSA is an NIA Intramural
Research Study; it began in 1958 [22] and, starting in
1994, a subset of participants were invited to the neuroi-
maging substudy in which they received longitudinal neu-
roimaging, cognitive testing, and clinical assessments [23].
The WRAP study began in 2001, recruiting cognitively
normal adults of which 72% were adult children of late-
onset AD dementia patients [24].

2.2. Consensus diagnosis approach of each study

Each of the studies included in these analyses completed
a consensus diagnosis at baseline and annually or as needed
thereafter. The teams at each site consisted of a mix of clini-
cians, including physicians, research nurses, research assis-
tants, and neuropsychologists. Each team met together on a

regular basis (usually monthly) and adjudicated the cases.
Each study used the Clinical Dementia Rating (CDR) [25]
in its clinical assessment, as one piece of information to
establish a consensus diagnosis for each subject at each visit.
Additional information examined in consensus diagnosis
procedures included cognitive test performance (single
time point or longitudinal, depending on study), medical,
neurologic and psychiatric assessments, and informant inter-
views that are part of the CDR.

In addition, each preclinical AD study assessed their par-
ticipants with a comprehensive neuropsychological battery
that spanned domains including episodic memory, executive
function, language, spatial ability, attention, and psychomo-
tor speed, but the batteries were not identical between any
two studies. Individual tests in each battery are listed in
Table 1 and described in Supplementary Information 1.

2.3. Analysis plan

The analysis was performed in two major steps. First,
cognitive factors were constructed in the pooled data using
available tests in each study. Second, the algorithmic classi-
fication was derived and validated.

Table 1

Cognitive tests in studies across five studies in the preclinical AD consortium (N 5 1746)

Cognitive test ACS AIBL BIOCARD BLSA WRAP

Memory

Logical Memory IA–immediate 36.9 100.0 100.0 100.0

Logical Memory IIA–delayed 36.9 100.0 100.0 100.0

Logical Memory IB–immediate 96.0 100.0

Logical Memory IIB–delayed 96.0 100.0

Buschke Selective Reminding Test 100.0

CVLT immediate recall 100.0 96.0 100.0

CVLT short-delay recall 100.0 96.0 100.0

CVLT long-delay recall 100.0 96.0 100.0

AVLT total recall 100.0

AVLT delayed recall 100.0

Nonmemory

MMSE 99.7 100.0 99.3 97.3 100.0

Boston Naming Test, percent correct 56.7 99.9 99.7 95.2 99.4

WAIS-R Block Design 99.7 93.6

WAIS-R Digit Symbol 36.9 99.7 93.2 100.0

Trail Making, part A 100.0 95.0 98.0 100.0

Trail Making, part B 100.0 95.0 98.0 99.4

Animal fluency, 60 seconds 100.0 94.0 95.0 98.0 93.0

Vegetable fluency, 60 seconds 36.9 91.0 98.0

Fruits fluency, 60 seconds 92.7

Phonemic fluency–S words 36.9 92.8 92.0 98.0

Phonemic fluency–errors 93.0

Digits Forward, Trials correct 94.3 100.0 100.0 100.0

Digits Backward, Trials correct 94.3 100.0 100.0 100.0

Digit Symbol Copy 99.9

Clock drawing 100.0

Rey Complex Figure Draw, immediate 99.9 99.7

Rey Complex Figure Draw, delayed 99.9 99.7

Abbreviations: ACS, Adult Children Study; AIBL, Australian Imaging, Biomarker, and Lifestyle; AVLT, Auditory Verbal Learning Test; BLSA, Baltimore

Longitudinal Study of Aging; CVLT, California Verbal Learning Test; MMSE, Mini–Mental State Examination; WAIS, Wechsler Adult Intelligence Scale;

WRAP, Wisconsin Registry for Alzheimer’s Prevention.

NOTE. Numbers are percentages of observations in a study with data on the test.
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2.3.1. Harmonization of cognitive tests
To facilitate comparison and combination of cognitive

performance across the studies in pooled data, three cogni-
tive factors were derived using confirmatory factor analysis
methods described elsewhere [15–18]. These were labeled:
(1) general cognitive performance, (2) episodic memory,
and (3) executive function based on the content of the tests
that loaded on each factor. Briefly, for each cognitive
domain factor analysis, models were estimated consistent
with two-parameter logistic item response models using a
Bayesian estimator that permitted use of tests common
across studies as well as noncommon tests in Mplus soft-
ware, version 7.3 [26]. Item-level fit of data in the models
was evaluated using normalized residuals [27,28]. Factor
scores were estimated in the pooled data for each model
based on averages of 30 plausible values from the
posterior distribution generated by the models [26]. Before
combining cognitive testing data across the different studies,
test versions and characteristics were reviewed with study-
specific codebooks and documentation, and by comparing
means and ranges of the variables. To further verify equiva-
lence of common tests, measurement noninvariance across
data sets was evaluated using alignment analysis in Mplus,
version 7.3 [26].

The episodic memory factor included the Auditory Ver-
bal Learning Test immediate and delayed recall; California
Verbal Learning Test (CVLT) immediate, short-, and long-
delay recall; Wechsler Memory Scale Logical Memory im-
mediate and delayed recall for stories A and B, and the
Free and Cued Selective Reminding Test (see
Supplementary Information 1). The executive function fac-
tor included fluency for animals, fruits, and vegetables; pho-
nemic fluency; Digit Span Backwards; Digit Symbol
Substitution; and Trail Making tests A and B. The general
cognitive factor included all available cognitive test vari-
ables in each data set.

2.3.2. Algorithmic classification of MCI
To determine the optimal method for constructing an

algorithmic classification of progression from normal cogni-
tion to MCI, three alternative approaches were developed
and their relationship with the study-assigned diagnoses in
each cohort computed. The three algorithms were based on
(1) cognitive test performance only, (2) CDR �0.5 only,
and (3) both cognitive test performance and CDR �0.5.
These criteria made it possible to classify participants at
each study visit for which cognitive and CDR data were
available.

Internally derived age-adjusted means were established
for each test in the pooled data (see Supplementary
Table 7). Several analyses were conducted to determine
the optimal cut-point that would identify those with a
decline in cognitive performance. Then, several potential
cut-points (0.5 standard deviation [SD], 1 SD, and 1.5
SD) below the age-adjusted mean of each test were

examined. The cut-point 1 SD was selected to balance
specificity and sensitivity to study-assigned diagnoses in
each study data set (see Supplementary Information 2 for
results comparing the different cut-points to one another)
[13]. Poor cognitive performance was operationalized as
having either two or more memory test scores or two or
more nonmemory test scores �1 SD below the age-
adjusted mean for the test.

A participant was defined using the algorithmic classifi-
cation as progressing from cognitively normal to MCI if
they did not meet criteria at their baseline study visit,
but later met algorithmic criteria during at least two
consecutive follow-up study visits. Two consecutive
follow-up visits were required for this definition of pro-
gression because previous studies have demonstrated that
data from a single time point can misclassify low-
performing participants who may never progress to impair-
ment or overestimation of one’s status if there are retest
effects [29,30].

2.3.3. Validation procedures
First, each of the three alternative algorithms was evalu-

ated within each data set separately, to examine the corre-
spondence between each algorithmic classification
approach and the study-assigned clinical diagnosis on
follow-up, using receiving operating characteristic (ROC)
curve analysis to calculate the area under the curve (AUC),
sensitivity, and specificity. The ROC represents a combined
function of the sensitivity (true positive rate) and the speci-
ficity (true negative rate) of prediction, and the AUC is
widely considered a highly informative reflection of a mea-
sure(s)’ overall accuracy for predicting a disease-related
outcome.

Then, the pooled data were used to examine the predictive
criterion validity of associations between baseline cognitive
factor scores and the algorithmic classification status 5 years
post baseline, using ROC analyses. Finally, the pooled data
set was used to examine the associations of the rate of
change in the cognitive factors with time to progress to a
future algorithmic classification of MCI, using joint sur-
vival/growth models in a structural equations modeling
framework [31]. The same rate of change analyses were con-
ducted using individual cognitive tests administered in at
least three of the five studies (five memory tests and 10 non-
memory tests) in place of the cognitive factors.

2.3.4. Sensitivity analyses
These approaches to validating the algorithmic classifica-

tions introduce circularity, given that cognitive tests are, in
some instances, used in both the construction of the algo-
rithmic classifications and in the outcomes used to validate
the classifications. To address this problem, for each cogni-
tive test, algorithmic classifications were reconstructed by
excluding the test and repeating all analyses using the recon-
structed algorithmic classifications.
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3. Results

The mean age at baseline in each study was between
55 years (WRAP) and 70 years (AIBL), with participants
as young as 40 years in several cohorts. Most participants
were female and non–Hispanic white (Table 2). Longitudi-
nal cognitive data follow-up spanned an average of 3.9 years
(AIBL) to 14.4 years (BLSA). The majority of the 1746 par-
ticipants had data for every cognitive test administered in a
study (Table 1) (of note, the ACS had less data available
for Logical Memory, Boston Naming, Digit Symbol Substi-
tution, and fluency measures because, by design, those tests
were only administered to the subset of participants older
than 65 years at baseline). Each study administered list
learning or story recall tests to assess episodic memory, for
a total of three to seven episodic memory test variables per
study. Each study administered eight to 11 nonmemory tests.

3.1. Concurrent criterion validity

Table 3 summarizes the number of cases with MCI on
follow-up in each study using the study-specific consensus
diagnoses (“Study cases” in Table 3) and the three algo-
rithmic classifications (“Algorithm cases” in Table 3).

Compared to the study-assigned diagnosis (N 5 187), the
algorithmic classification based on “CDR only” or “cogni-
tion only” classified more participants as MCI (N 5 245
and N 5 830, respectively). The algorithm based on combi-
nation of CDR and cognition yielded a similar number of
cases (N 5 183) compared to the study-assigned diagnoses.
The incidence of MCI based on the CDR and cognition algo-
rithm was 15.3 cases per 1000 person-years (Table 3).

To complement Table 3, Fig. 1 illustrates the time course
to algorithmic classifications of MCI using Kaplan-Meier
survival curves for each formulation of the algorithmic clas-
sification. Based on these curves, requiring both CDR and
cognition is more conservative than requiring either alone.
Using this formulation, those who progressed to MCI did
so evenly over the first 20 years of study follow-up.

For a closer inspection of agreement between algorithmic
classifications and study-assigned diagnoses at the unit of in-
dividual visits, Table 4 provides results from ROC analyses
by data set for each formulation of the algorithmic classifi-
cation. The AUC for the algorithmic classification based
on cognitive tests only was lower in each data set compared
to other approaches; it provided poor specificity (47%–68%)
in each data set due to larger numbers of false positive cases.
The AUC of the algorithmic classification based on CDR

Table 2

Sample demographic characteristics and longitudinal follow-up (N 5 1746)

Characteristic Overall sample ACS AIBL BIOCARD BLSA WRAP

Sample size 1746 360 767 301 147 171

Number of visits, mean (SD) 4.4 (2.8) 3.5 (2.3) 3.5 (0.9) 7.0 (2.9) 7.7 (4.9) 3.4 (1.1)

Years of follow-up, mean (SD) 6.6 (4.9) 4.4 (3.3) 3.9 (1.5) 11.3 (4.3) 14.4 (6.7) 8.2 (1.7)

Age at recruitment, mean (SD) 64.0 (9.6) 60.4 (8.1) 70.0 (7.0) 58.1 (8.6) 63.5 (10.1) 55.3 (5.9)

Years of education, mean (SD) 16.2 (2.5) 16.0 (2.5) 14.7 (1.6) 17.0 (2.4) 16.9 (2.2) 15.6 (2.6)

Female sex, N (%) 1033 (59.2) 231 (64.2) 439 (57.3) 177 (58.8) 72 (49.0) 114 (66.7)

White race, N (%) 1655 (94.8) 313 (86.9) 767 (100) 310 (96.6) 117 (79.6) 168 (98.2)

Abbreviations: ACS, Adult Children Study; AIBL, Australian Imaging, Biomarker, and Lifestyle; BLSA, Baltimore Longitudinal Study of Aging; SD, stan-

dard deviation; WRAP, Wisconsin Registry for Alzheimer’s Prevention.

Table 3

Comparison of study-assigned diagnoses to algorithmic classifications of mild cognitive impairment by data set (N 5 1746)

Data set N

Study

cases

CDR 1 Cognition CDR only Cognition only

Algorithm

cases

Progressors

based on

algorithmic

classification

Incidence

(cases per

1000

person-years)

Algorithm

cases

Progressors

based on

algorithmic

classification

Incidence

(cases per

1000

person-years)

Algorithm

cases

Progressors

based on

algorithmic

classification

Incidence

(cases per

1000

person-years)

BIOCARD 301 74 89 70 20.4 114 95 27.7 257 148 43.2

ACS 360 28 19 14 8.7 28 19 11.8 193 124 77.3

WRAP 171 5 16 13 8.7 21 21 14.0 110 83 55.5

BLSA 147 15 18 11 4.8 36 33 14.3 117 75 32.6

AIBL 767 65 103 75 24.2 107 77 24.8 607 400 129.1

Total 1746 187 245 183 15.3 306 245 20.5 1284 830 69.6

Abbreviations: ACS, Adult Children Study; AIBL, Australian Imaging, Biomarker, and Lifestyle; BLSA, Baltimore Longitudinal Study of Aging; CDR,

Clinical Dementia Rating; WRAP, Wisconsin Registry for Alzheimer’s Prevention.

NOTE. The study diagnosis is the number of individuals diagnosed as having MCI in each study, determined via study-specific adjudication procedures. An

algorithm case is a participant with at least one study visit meeting criteria for algorithmic classification. A “progressor based on algorithmic classification” is a

participant who was cognitively normal at baseline and had two consecutive visits with impaired performance based on the algorithm.
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only ranged from 78% to 99%; for the majority of the sites, it
was lower in comparison to that for the combination of the
cognitive tests and the CDR. The AUC for the algorithm
based on the cognitive tests and the CDR combined ranged
from 85% to 95%. In general, using both cognitive tests
and the CDR together considerably reduced false positive
cases at the expense of a somewhat higher number of false
negative cases.

3.2. Predictive criterion validity

Table 5 provides associations of baseline cognitive fac-
tors with algorithmic classification 5 years later for partici-
pants with at least 5 years of follow-up data available
(N 5 1300). The algorithmic classification using cognitive
data and CDR combined tended to outperform other ap-
proaches in terms of AUC, sensitivity, and specificity for
each cognitive factor score, indicating that combining cogni-
tive data and CDR yielded better predictive criterion validity.
At the level of individual cognitive tests, two tests of
episodic memory (Logical Memory and CVLT) performed
the best, as they produced the highest AUC, sensitivity,
and specificity values compared to the other individual tests
(Supplementary Table 5).

Table 6 provides longitudinal associations of cognitive
trajectories with progression to each algorithmic-based clas-
sification, using joint survival/growth curve models. Steeper
cognitive decline in all factor scores was associated with
elevated risk of progression to MCI during follow-up. As
with earlier results, the combined algorithm based on cogni-
tive data and the CDR outperformed other approaches.
Using this algorithm, steeper cognitive decline in all
factor scores was associated most strongly with elevated
risk of progression to MCI during follow-up. The strongest
associations were seen for individual tests of episodic mem-
ory and executive function, including Logical Memory (im-
mediate and delayed recall), CVLT (immediate, short-, and
long-delay recall), Trails A and B, and animal fluency
(Supplementary Table 6).

Fig. 1. Kaplan-Meier survival curves of time to algorithmic classifications

of mild cognitive impairment (MCI) (N 5 1746). These plots show time to

progression from normal cognition until progression to MCI using algo-

rithmic classifications based on Clinical Dementia Rating (CDR) 1 cogni-

tion (red), CDR only (green), and cognition only (blue). A progressor is a

participant whowas cognitively normal at baseline and had two consecutive

visits with impaired performance based on the algorithm.

Table 4

Criterion validity of formulations of an algorithmic classification of mild cognitive impairment by data set (N 5 1746)

AUC Sensitivity Specificity Kappa N TP FP FN TN

ACS

Cognition and CDR 0.86 0.72 1.00 0.83 1249 39 0 15 1195

CDR only 0.99 0.98 1.00 0.99 1249 53 0 1 1195

Cognition only 0.71 0.74 0.68 0.10 1249 40 388 14 807

AIBL

Cognition and CDR 0.95 0.92 0.97 0.64 2671 83 80 7 2501

CDR only 0.94 0.92 0.96 0.60 2671 83 95 7 2486

Cognition only 0.74 1.00 0.47 0.06 2671 90 1356 0 1225

BIOCARD

Cognition and CDR 0.92 0.85 0.99 0.87 1954 176 17 31 1730

CDR only 0.97 0.96 0.98 0.88 1954 199 41 8 1706

Cognition only 0.73 0.89 0.56 0.18 1954 184 760 23 987

BLSA

Cognition and CDR 0.85 0.80 0.90 0.18 317 4 31 1 281

CDR only 0.78 0.80 0.76 0.07 317 4 74 1 238

Cognition only 0.82 1.00 0.63 0.05 317 5 115 0 197

WRAP

Cognition and CDR 0.86 0.80 0.92 0.14 575 4 43 1 527

CDR only 0.83 0.80 0.86 0.08 575 4 78 1 492

Cognition only 0.80 1.00 0.60 0.03 575 5 226 0 344

Abbreviations: ACS, Adult Children Study; AIBL, Australian Imaging, Biomarker, and Lifestyle; AUC, area under the curve; BLSA, Baltimore Longitudinal

Study of Aging; CDR, Clinical Dementia Rating; FN, false negative; FP, false positive; ROC, receiving operating characteristic; TN, true negative; TP, true

positive; WRAP, Wisconsin Registry for Alzheimer’s Prevention.

NOTE. Each visit for each participant was a different data point used in ROC analyses.
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3.3. Sensitivity analyses

Sensitivity analyses in which algorithmic classifications
were tested by omitting one test and comparing the results
to the remaining tests yielded no change in inferences.

4. Discussion

A classification algorithm was developed to identify indi-
viduals who were cognitively normal at baseline but who
subsequently progressed to MCI, using data from five indi-
vidual studies. Results suggest the combination of the CDR
and age-adjusted cut-points on cognitive tests derives a
more reliable classification of MCI, as compared with using
either data alone. A 1 SD cutoff for each of the cognitive tests
was chosen after evaluating several alternatives. Overall,
compared to a 1 SD cut-point, the benefit to sensitivity was
only negligibly better using a 0.5 SD but was adversely
affected using a 1.5 SD cut-point. Specificity of the algorithm
in each data set was largely unaffected by the cut-point
used on individual cognitive tests. Additionally, longitudinal
information was required to define a case of progression,
which has been demonstrated in other studies to better differ-
entiate cognitively normal individuals who progressed over
time to the symptomatic phase of disease [29,30].

The AUC for the algorithm using cognitive tests only
ranged from 71% to 82%, whereas for the combination of
the CDR and cognition, the AUCwas 85% to 95%. It is note-
worthy that the AUC for the algorithm using only the CDR
had the broadest range across the sites (78%–99%), suggest-
ing there may be site differences in the way in which the
CDR was implemented during the diagnostic process.

The validity of this approach was further established by
the significant relationship between the classification of
MCI based on this algorithmic combination and baseline
levels of, and rates of change in, factor scores for general
cognitive performance, memory, and executive function.
This latter finding is consistent with several previous
single-site studies in which the outcome was progression
to MCI [21,32–35], supporting the validity of the
algorithmic classification developed here for application
across multiple studies.

The algorithm described here provides a method of
combining clinical and cognitive data across individual
longitudinal studies of cognitively normal individuals to
generate a valid, reliable outcome classification of MCI
for those with preclinical AD. This approach may also
be useful in clinical trials aimed at those thought to have
preclinical AD in which an outcome is progression to
MCI, since it provides an alternative to implementation
of a time-consuming adjudication panel. Because the
approach requires serial cognitive testing and CDR ratings,
it may also be applicable to other cohort studies of initially
cognitively normal adults with diverse ages, genetic dispo-
sitions, and other characteristics. Clinical decision-making
relies on many factors including cognitive testing, proxy
reports, and differential diagnosis using a medical record.
Although our algorithm does not take all these factors
into consideration, it appears to reflect current approaches
to clinical classification applied in research settings.
Caution should be exercised in applying these or similar
criteria to patients in clinical settings.

Table 6

Relationship of rate of change in cognitive factors to likelihood of

progression to algorithmic classification of mild cognitive impairment

(N 5 1746)

Factor

Hazard ratio

(95% confidence

interval) Z-statistic

Cognition and CDR

General cognitive performance 0.30* (0.23, 0.40) 28.57

Memory 0.31* (0.24, 0.41) 28.29

Executive functioning 0.30* (0.19, 0.46) 25.30

CDR only

General cognitive performance 0.36* (0.29, 0.45) 29.18

Memory 0.40* (0.32, 0.50) 28.27

Executive functioning 0.39* (0.28, 0.54) 25.59

Cognition only

General cognitive performance 0.45* (0.38, 0.54) 28.89

Memory 0.51* (0.43, 0.59) 28.50

Executive functioning 0.48* (0.37, 0.62) 25.62

Abbreviation: CDR, Clinical Dementia Rating.

NOTE. Results are from joint survival/growth models of the association

between rate of change in cognitive factors and time to algorithmic classi-

fication. As indicated by hazard ratios less than 1.0, shallower rates of cogni-

tive decline are associated with less risk of progression to mild cognitive

impairment based on each algorithmic classification. The algorithmic clas-

sification based on CDR and the general cognitive factor shows the strongest

associations because the hazard ratios are furthest away from 1.0 and the

z-statistics of the tests are larger than for other approaches.

*P , .05.

Table 5

Relationship of baseline cognitive factors to likelihood of progression to

algorithmic classification of mild cognitive impairment 5 years later

(N 5 1300)

Algorithm and cognitive factor AUC Sensitivity Specificity

Cognition and CDR

General cognitive performance 0.79 0.74 0.71

Memory 0.77 0.67 0.74

Executive factor 0.70 0.67 0.66

CDR only

General cognitive performance 0.71 0.74 0.61

Memory 0.69 0.62 0.68

Executive factor 0.66 0.67 0.61

Cognition only

General cognitive performance 0.74 0.73 0.62

Memory 0.72 0.68 0.64

Executive factor 0.65 0.57 0.66

Abbreviations: AUC, area under the curve; CDR, Clinical Dementia Rat-

ing; ROC, receiving operating characteristic.

NOTE. These ROC analyses show the algorithmic classification based on

both cognitive factors and CDR 5 years after baseline and are marginally

more associated with baseline cognitive test performance than other algo-

rithmic classifications.
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Strengths of the study are inclusion of well-characterized
samples with long follow-up, detailed neuropsychological
test batteries, and experienced clinicians. Additional
strengths include data harmonization approaches based on
state-of-the-art methods. A limitation of the study is the het-
erogeneity in cognitive tests administered across the studies,
necessitating an assumption that low performance on one
test is as indicative of impairment as low performance on
another test. Specific assignments of impairment may have
been different if data on different tests had been available.
Another major limitation is the lack of autopsy data on the
subjects classified as having MCI with which to truly eval-
uate criterion validity; this study relied on study-assigned di-
agnoses which themselves are imperfect and susceptible to
information biases [35]. A further limitation is that while
this study’s approach for defining progression takes into ac-
count baseline cognitive status and uses cutoff scores that
differ by age, the algorithmic classification’s assignment at
any single time point does not consider change from a previ-
ous point under observation. We believe that endeavoring to
determine how much change from baseline is clinically sig-
nificant would place an additional criterion on the data that
are not recommended in either the Petersen criteria or the
NIA-AA criteria. Taken from another perspective, the algo-
rithmic approach presented here might be considered as a
strength, since one could argue that we achieved high valid-
ity for the algorithmic approach without adding an addi-
tional dimension, which might be seen by some as
problematic. A final study limitation is generalizability of
the pooled sample: all studies included biomarker proced-
ures, so participants in them may not be representative of
the general population.

In conclusion, this study showed that serial cognitive and
clinical data from cognitively normal individuals that differ
across data sets can be leveraged to derive a common classi-
fication algorithm for progression to MCI across five longi-
tudinal studies. These classifications were associated with
poorer cognitive performance at baseline and greater rate
of cognitive decline over time.

Establishing a method for diagnostic harmonization
across current cohorts and applying methods for combining
the cognitive data are the first essential steps in providing
statistical power necessary to examine the relationships be-
tween biomarker levels at baseline and their relationship to
progression to MCI, understanding who progresses and
when people are changing on what variables, as well as for
analyzing lifestyle factors that influence rates of cognitive
decline over time. It is anticipated that these analyses will
uncover key genetic, social, and biological factors that influ-
ence progression during preclinical AD.
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RESEARCH IN CONTEXT

1. Systematic review: There are few existing studies
that comprehensively assess the clinical, cognitive,
and biomarker profiles of preclinical Alzheimer’s
disease (AD) in cognitively normal middle-aged
and older adults. This limitation fostered the estab-
lishment of the preclinical AD consortium, designed
to combine data across existing longitudinal studies
that have followed cognitively normal individuals
over time.

2. Interpretation: We derived and validated a generaliz-
able classification algorithm for mild cognitive
impairment to implement across multiple studies.
Results suggest both cognitive tests and Clinical De-
mentia Rating can be combined to obtain a reliable
mild cognitive impairment classification with high
specificity and sensitivity. Classifications based on
this algorithm are associated with baseline cognitive
performance and cognitive decline.

3. Future directions: Establishing a method for cross-
cohort diagnostic harmonization will facilitate op-
portunities to capitalize on combined clinical,
cognitive, and biomarker data, providing statistical
power necessary to uncover key genetic, social, and
biological factors that influence progression during
preclinical AD.
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