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A Continuum Model of Gas Flows with

Localized Density Variations

S. Kokou Dadzie, Jason M. Reese ∗ and Colin R. McInnes

Department of Mechanical Engineering, University of Strathclyde,

Glasgow G1 1XJ, UK

Abstract

We discuss the kinetic representation of gases and the derivation of macroscopic
equations governing the thermomechanical behavior of a dilute gas viewed at the
macroscopic level as a continuous medium. We introduce an approach to kinetic the-
ory where spatial distributions of the molecules are incorporated through a mean-
free-volume argument. The new kinetic equation derived contains an extra term
involving the evolution of this volume, which we attribute to changes in the ther-
modynamic properties of the medium. Our kinetic equation leads to a macroscopic
set of continuum equations in which the gradients of thermodynamic properties,
in particular density gradients, impact on diffusive fluxes. New transport terms
bearing both convective and diffusive natures arise and are interpreted as purely
macroscopic expansion or compression. Our new model is useful for describing gas
flows that display non-local-thermodynamic-equilibrium (rarefied gas flows), flows
with relatively large variations of macroscopic properties, and/or highly compress-
ible fluid flows.

Key words: gas kinetic theory, Boltzmann equation, compressible fluids and flows,
Navier-Stokes equations, rarefied gas dynamics, constitutive relations

1 Introduction

In gas dynamics, the Boltzmann kinetic equation is generally accepted as de-
scribing the evolution of the dilute gaseous molecule distribution function.
This equation is presumed to be valid for any dilute gas flow, whatever the
Knudsen number (which is defined as the ratio of the molecular mean free
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path to a typical macroscopic length scale of the flow) [1]. The Boltzmann
kinetic equation has received a number of derivations under specific assump-
tions which all aim to prove its physical and mathematical rigour [2]. It is also
widely accepted that continuum fluid mechanical models, and associated clas-
sical thermodynamic models, in particular equations of state, can be obtained
from the statistical kinetic formulations [3]. For example, it is well-known that
the three classical fluid dynamic equations, the Navier-Stokes equations, may
be derived from the Boltzmann kinetic equation [4]. These fluid mechanical
equations have amply demonstrated their capability in handling typical flows
of small Knudsen number, or flows with relatively small variations of their
macroscopic properties.

Describing flows beyond the broad range of applicability of the Navier-Stokes
model remains, however, a critical area of active investigation. These flows
range from the high speed (e.g. shock waves, kinetic boundary layers, re-
entry problems) to the micro- and nano-scale. Heat transfer processes in a
highly rarefied gas, in particular at high temperature gradients [5–7], and
some thermally-driven flows are also not well understood [8–10]. Meanwhile,
various continuum models based on approximate solutions to the Boltzmann
equation, and which are expected to cover flows beyond the Navier-Stokes
level, are the subject of different controversies and still under investigation
[9,11–15].

In this paper we discuss the kinetic description of dilute gases, and its link
to continuum hydrodynamic models for gas flows. We revisit the statistical
microscopic representations of a dilute gas where the medium is still measur-
able by macroscopic quantities, i.e. mean flow velocity and thermodynamic
properties (density, temperature, pressure). We introduce a kinetic represen-
tation that includes the spatial configuration of the molecular ensemble via
the free spaces between the molecules. The fundamental change introduced
in our kinetic statement is that, while a gas is composed of molecules rapidly
moving and interacting, the free volume around each gaseous molecule should
be accounted for in a complete microscopic representation. This statement
allows us:

(1) to maintain in the statistical microscopic description a proper account of
the collective nature of the medium constituted by the molecules;

(2) to consider the domain (with its boundaries) occupied by an ensemble
of molecules locally as an independent variable that is free from any
reference frame, in accordance with classical thermodynamics.

In the first section of this paper we review some of the mathematical tools
presently used in statistical mechanics and kinetic theory to derive non-equilibrium
gas equations; in particular, the probability density and its link to fluid mass-
density. Subsequent sections are devoted to the formulation of an alternative
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kinetic description and consequent hydrodynamic models. In the final section
we present some qualitative predictions of the new model compared with the
traditional Boltzmann model and continuum fluid equations.

It is important to note that, while the discussion presented in this paper may
impact on extended versions of the Boltzmann kinetic equation, we do not
directly consider here the broad range of modified versions of the Boltzmann
kinetic equation used in other fields such as dense media, media comprising
heavy and large molecules, reacting and ionized gases, molecules with rota-
tional and vibrational energies or molecules with internal structures, mixtures
etc. We are concerned only with the monatomic elementary gas kinetic equa-
tions, in which molecules are viewed as point masses.

This paper describes the full development of a model the authors have been
considering over recent years [16].

2 Preliminaries

2.1 Classical kinetic equations vs. molecular spatial distributions

The physical space is referenced with a fixed inertial frame (X1, X2, X3), in
which exists a gas. We denote a differential element in the position sub-phase
space, dX = dX1

dX2
dX3

, and a differential element in the velocity sub-phase
space, dξ = dξ1dξ2dξ3 . Let us define the following two probability densities:

(A) A probability density function fA(t, X, ξ) such that fA(t, X, ξ)dXdξ repre-
sents the probable number of molecules that, at time t, have their positions
located within X ± dX and their velocities within the element ξ ± dξ.

(B) A probability density function fB(t, X, ξ) for an arbitrary single gas
molecule such that fB(t, X, ξ)dXdξ represents the probability that, at time
t, the velocity of this single molecule is within the element ξ ± dξ and the
position of this single molecule is within X ± dX .

The above two probability density functions are evidently two different con-
cepts. In particular, (A) gives a number of molecules, while (B) does not.
We use the term “mass-density” for the physical “density” of a medium as it
is conceived in classical continuum mechanics as a thermodynamic property,
and it is viewed as an amount of mass divided by the volume in which is
spread this mass. This volume is, in reality, made up of empty spaces and real
volumes of the molecular objects. The volume, in which is spread the mass,
is itself a thermodynamic variable in classical equilibrium thermodynamics.
Therefore the mass-density, and its associated specific volume, have at first
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sight no predefined assignment to the mathematical measures or probability
density functions. Nevertheless, a rational derivation of fluid kinetic equations
evidently proceeds through a proper handling of this quantity with mathe-
matical tools.

A derivation of the Boltzmann kinetic equation in a monatomic dilute gas may
start with the Liouville equation for the one-molecule distribution function,
as defined in (B), see also [17]. The Liouville equation is written

∂fB

∂t
+ (ξ · ∇)fB + (Ftot · ∇ξ)fB = 0, (1)

where ∇ = (∂/∂X1, ∂/∂X2, ∂/∂X3) is the traditional spatial gradient op-
erator and ∇ξ denotes the similar operator in the velocity space, i.e., ∇ξ =
(∂/∂ξ1, ∂/∂ξ2, ∂/∂ξ3). In equation (1), the third term on the left hand side cor-
responds to the total force exerted on a given arbitrary molecule. This force
encompasses both external actions and the potential forces exerted by the
other surrounding molecules. The route to a gas kinetic equation is concerned
with modelling the force term. Instead of maintaining the continuous action
of the intermolecular forces, this force component is replaced by discontinuous
changes that occur instantly onto the momentum of the single molecule [17].
The resulting equation is the Boltzmann equation in the one-particle phase
space, written when ignoring external forces as

∂fB

∂t
+ (ξ · ∇)fB = I(fB, fB). (2)

The term on the right hand side that arose from the intermolecular forces is the
collision integral, restricted by the assumption that molecules are uncorrelated
in both the position and velocity spaces. For hard-sphere molecules, this is
written,

I(f, f) =
∫

[f(t, X, ξ∗)f(t, X, ξ∗1) − f(t, X, ξ)f(t, X, ξ1)] ξrbdbdǫdξ1, (3)

where ξ and ξ1 refer to post-collision velocities of the interacting molecules,
ξ∗ and ξ∗1 refer to pre-collision velocities, ξr = |ξ − ξ1| is the two colliding
molecules’ relative velocity, ǫ is the azimuthal impact angle, b is the distance
of closest approach of the undisturbed trajectories in the centre-of-mass frame
of reference. We recall that this collision integral is based on the elementary
dynamic laws of a collision between two point-mass molecules, only exchanges
of momentum and energy are involved, and that this collision integral does
not describe any spatial configuration changes during the collisions.

Let us define the following quantity:

Bn(t, X) =
∫

fB(t, X, ξ)dξ , (4)
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which is another probability density function in the position sub-space. Ac-
cording to the definition of the distribution function fB, Bn(t, X)dX represents
the probability of finding the single molecule in the vicinity of position X, re-
gardless of its velocity. In kinetic theory, Bn(t, X) is conventionally associated
with the mass-density of the medium through the following assertion [18]:
consider a fixed number N as the total number of gas molecules; assume

fA = NfB, (5)

and then interpret
∫

fAdξ as an average number of molecules per unit gas
volume; hence Bn(t, X) (or NBn(t, X)). An elementary volume of gas is also
then represented by dX , and the distribution function fA follows equation (2)
because N is just a constant.

However, this assertion, and equation (5), presupposes that the summation
over the one-particle distribution functions corresponding to each individual
molecule gives the average number of molecules around a given position. This
implies that each molecule is statistically independent (this is without refer-
ring to the collision integral), which means the true collective nature of the
molecules constituting the medium, and the real spatial configurations of the
molecules, are disregarded. For example, the position of a given molecule rel-
ative to another is ignored. Furthermore, an elementary volume of gas repre-
sented by dX within this definition is a frame-dependent quantity, in contrast
with thermodynamic properties.

Generally, an approximation such as equation (5) compromises a good de-
scription of the mass-density in a non-equilibrium gas. Indeed, it is important
to note that in a non-equilibrium gas the thermodynamic properties of the
gas medium are defined locally. It is a localized number of molecules that de-
fines the macroscopic mass-density, and this varies in time and position. Some
published articles containing derivations of the Boltzmann kinetic equation
explicitly present the mass-density of the gas as a constant, or the medium
as spatially uniform [19,20]. The mass-density of the medium is defined as a
normalization factor N/V in front of a distribution function, where N is the
total number of molecules in a fixed volume V of a container [20,21].

Derivations of the Boltzmann equation from the Liouville equation are also
frequently based on an asymptotic limit analysis that involves N tending to
infinity. However, for the distribution function described in (A), when the
number of molecules tends to infinity then the distribution function fA also
tends to infinity (the number of molecules per unit of physical volume becomes
infinite). Then a rescaling, such as equation (5), is usually required [22]. There-
fore, even with equation (5), the definition of Bn in equation (4) is difficult
to classify as a physical mass-density of the medium being a thermodynamic
variable.
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Another common route to the Boltzmann kinetic equation is to start with
the distribution function fA directly, so that equation (4), written with fA

instead, reads as an average number of molecules per unit volume, which is
then interpreted as the mass-density of the medium. In this derivation, it is
simply assumed that “the variation of a number of molecules in a cell defined
by (ξ ± dξ) ⊗ (X ± dX) is due to collision between molecules” [4], and that
collision itself is an operation occurring only in the velocity sub-space. Then,

∂fA

∂t
+ (ξ · ∇)fA = I(fA, fA). (6)

There are some incompatibilities inherent in this formulation. Considering a
position X in the gas, there is not a given single molecule but a collection
of molecules associated with that point, and in a similar manner the velocity
(some references use the term “molecules of a kind” [4,23]). Accordingly, col-
lisions can be regarded as interactions between two groups of molecules. This
contrasts with the usual description of the dynamics of a collision as an inter-
action between two individual molecules coming from two different positions.
The concept of many molecules sitting at the same position at the same time
can be regarded as problematic in equation (6). In any case, an elementary
volume of a gas, that is, the differential element dX , is still linked to the frame
(X1, X2, X3), in contrast to the classical thermodynamic concept of the vol-
ume of gas. Note that if a gas is flowing while in non-equilibrium, then the
domain occupied may be both variable and moving, while the reference frame
attached to X will always be fixed.

2.2 Equilibrium distribution and the Boltzmann kinetic equation

According to equation (2), equilibrium holds if and only if the distribution cor-
responds to the Maxwell-Boltzmann distribution given by (and disregarding
external force fields such as gravity),

F0(Vm) =
(

M

2πkTB

)

3

2

exp
[

−
M

2kTB
V 2

m

]

, (7)

where Vm is the molecular random velocity, TB is the kinetic temperature, M is
the gaseous molecular mass; and k the Boltzmann constant. Note that neither
the mass-density of the medium nor any pressure distributions are involved
in this distribution function; only the kinetic energy of the molecules, which
describes the kinetic temperature, is involved. In particular, the equilibrium is
defined by the molecular kinetic energy fluctuating around a constant value,
which defines the constant temperature. In spite of its widespread use in non-
equilibrium gas dynamics, it is still not completely clear whether such a dis-
tribution represents a complete thermodynamic equilibrium of a gas [24,25];
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we recall that the Boltzmann H-theorem, associated with the derivation of
the Maxwell-Boltzmann distribution as the only equilibrium distribution, is
strictly derived only if it is admitted first that the medium is spatially uniform,
and that bounding wall effects are neglected [4,18].

If the spatial distribution of the molecules is considered, a complete equilib-
rium distribution takes the form [26]

F (Vm, εi) = A exp
[

−
εi

kTB

]

exp
[

−
M

2kTB
V 2

m

]

, (8)

where εi expresses the potential energy of a given molecule due to the presence
of other surrounding molecules, and A is a normalization factor.

Dilute gas dynamics is founded on the assumption that molecules move mostly
uniformly, without any change in their momentum and also without any
communication with other molecules. Communication only takes place when
two molecules move very close to each other, which is the so-called “colli-
sion”. It is argued that long range forces are not important in a very dilute
medium where short-range interactions dominate molecular momentum ex-
changes. However, this neglects systematically the true collective or cohesive
nature of the molecule ensemble, and the description of their real spatial dis-
tributions is disregarded (as is seen by comparing equation 7 with equation 8).
The spatial distributions of the molecules, founded on molecular separation
distances, control the evolution of macroscopic thermodynamic variables, such
as the gas mass-density, specific volume or pressure.

Characteristics of the traditional Boltzmann equation impose a certain asym-
metry between the changes in positions and changes in velocities that is ob-
served in the structure of the equation: spatial variations of the distribution
function are independent of interactions between molecules that are contained
in the collision integral. A correction of this asymmetry can be based on the
concept of non-local and non-instant collisions [3]. However, this asymmetry
may also be corrected by supplementing the Boltzmann description with a
proper description of spatial variations of the molecules. This is the type of
model we investigate in the remainder of this paper.

3 An alternative kinetic model in continuous media

3.1 Formulation

In the previous section, our main criticism of existing kinetic models was the
representation of the mass-density of the medium and the spatial distribu-
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tion of the molecules. In this section, we present a kinetic model of a dilute
gas that includes a mass-density representation in the microscopic schema as a
property that involves many molecules. The conceptual frame is the following:
consider a molecule that belongs to a gas medium; the medium will be mea-
sured by macroscopical continuum field variables, so each gaseous molecule
should not be described as a single moving molecule at the microscopic level
but should be taken together with its surrounding molecules (i.e. together with
its environment).

Considering an arbitrary molecule, we define the following probability distri-
bution function:

f(t, X, ξ, v) is such that f(t, X, ξ, v)dXdξdv is the probability of an arbitrary

single molecule to be, at a given time t, located in the vicinity of position X
with its velocity in the vicinity of velocity ξ, while the configuration of its

surrounding molecules at that time is readable with a microscopic parameter

whose measurable value is around v.

Variable v takes a positive value so that v tending to zero represents packed
gaseous molecules with no separation distances, and v tending to infinity rep-
resents an isolated molecule. A dilute gas properly lies between these two lim-
iting cases. This new variable bears information about other molecules, and
the cohesive nature of the medium, and therefore completes the one-molecule
description.

This new variable is independent of the position and velocity variables of a
given molecule; it will not be important if continuum field variables based on
collections of molecules, such as mass-density and pressure, are not considered
(i.e. if we only wish to describe a single moving molecule). More precisely, if d
is on average the distance between a target single molecule and its surrounding
molecules, then the geometrical variable v may be given a handleable value of
the volume of the sphere of radius (d/2), i.e v = (4π/3)(d/2)3.

A total variation in time of the new one-molecule distribution function is given
by,

δf

δt
=
∂f

∂t
+ (

δX

δt
· ∇)f + (

δξ

δt
· ∇ξ)f +

δv

δt

∂f

∂v
, (9)

where δ/δt denotes the total time derivative following microscopic motions.
The rate of change of position with time is the velocity of the molecule, so
δX/δt = ξ. The rate of change of momentum with time is the sum of forces
exerted on the molecule, so δξ/δt = Fext + Fint, where Fext denotes external
forces such as gravity, Fint denotes internal forces due to other molecules (per
unit mass). The last term in equation (9) results from the local change of v,
i.e. the change in the configuration of the molecular ensemble due to changes
in the properties of the medium. We will therefore denote W = δv/δt, and
assume this quantity depends on the macroscopic properties of the medium.
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We admit that the probability associated to f is conserved in the generalized
phase space (X, ξ, v) and we can therefore write equation (9) as,

∂f

∂t
+ (ξ · ∇)f + (Fext · ∇ξ + Fint · ∇ξ)f +W

∂f

∂v
= 0. (10)

There are, in equation (10), two main terms to deal with: the change in mo-
mentum of the target molecule, and the change in the configuration of its
surroundings. These two terms can be modelled separately as, in the statis-
tical description, position and momentum are independent random variables.
The variation of f due to the stream motion of the target molecule in space
within equation (10) differs from the variation of f due to changes in the
configurations of other molecules (which is represented by the term in W ).

Concerning the changes in momentum, we may use the dilute gas assump-
tion following the traditional interpretation, that is: account for the momen-
tum changes of a molecule only during instantaneous collision with another
molecule. Accordingly, the momentum changes that occur due to the internal
forces in equation (10) can be approximated by a Boltzmann-type of collision
integral. We can therefore write,

∂f

∂t
+ (ξ · ∇)f + (Fext · ∇ξ)f +W

∂f

∂v
= I(f, f) . (11)

In contrast to the dynamics of a single molecule, the microscopic parameter,
v, is determined by the geometrical arrangement and dispersion of nearby
molecules. These molecules include the nearest, the furthest away and even
molecules that are not in the localized region. This variable does not impact
on the localized microscopic dynamics of a single molecule but introduces a
measure of the cohesive nature of the medium that has been previously ignored
by the instantaneous collisional representation of the momentum exchanges.

Hereafter, we disregard body forces, i.e. Fext = 0 (situations with non-vanishing
body force can in any case be easily incorporated into the description).

3.2 A model for deriving macroscopic equations

3.2.1 Definition of macroscopic properties

We define first the following average quantity:

An(t, X) =
∫

+∞

−∞

∫

+∞

0

f(t, X, ξ, v)dvdξ . (12)

This quantity refers, according to the definition of the distribution function
f(t, X, ξ, v), to a reduced probability in the position space, i.e. the probability
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of finding a molecule around X regardless of its velocity and the distribution
of the other molecules. This is not therefore a proper thermodynamic mass-
density of the medium.

The local mean value, Q̄(t, X), of any property Q can be defined according to
classical statistical mechanics by,

Q̄(t, X) =
1

An(t, X)

∫

+∞

−∞

∫

+∞

0

Qf(t, X, ξ, v)dvdξ . (13)

For example, the local average of v, i.e. the local mean-free-volume around
each gaseous molecule, is given by,

v̄(t, X) =
1

An(t, X)

∫

+∞

−∞

∫

+∞

0

vf(t, X, ξ, v)dvdξ . (14)

From this mean value of the volume around a molecule we can define a mass-
density in the vicinity of position X through:

ρ̄(t, X) =
An(t, X)M

An(t, X)v̄(t, X)
=

M

v̄(t, X)
, (15)

whereM is the molecular mass. The specific volume is then given by v̄(t, X)/M .

Two mean velocities can be defined using two different weighting values. First,
a local mean mass-velocity, Um(t, X), is given through

An(t, X)Um(t, X) =
∫ ∫

ξf(t, X, ξ, v)dξdv. (16)

As the molecular mass is constant in single-component media, it has been
canceled out in equation (16). According to the definition of the distribution
function, this average velocity can be viewed as the average velocity at which
molecules are traveling; it is independent of the mass-density of the medium.

Using the microscopic free volume as the weighting, a local mean volume-
velocity, Uv(t, X), can also be defined:

v̄(t, X)An(t, X)Uv(t, X) =
∫ ∫

vξf(t, X, ξ, v)dξdv. (17)

If the spatial distributions of the molecules are such that molecules maintain
on average the same separation distances between each other, in particular the
measurable volume between the molecules is always and everywhere the same,
then v is a constant and it is seen that Um(t, X) and Uv(t, X) coincide. This
uniformity situation represents a homogeneous medium, where mass-density is
constant throughout. It follows that a difference between these two velocities
occurs in a non-homogeneous medium, where variations of mass-density exist.
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From these two local mean velocities, two peculiar velocities can also be in-
troduced. The usual mass-velocity definition of peculiar velocity is

C = ξ − Um . (18)

But another peculiar velocity may be given through the volume-velocity, i.e.

C ′ = ξ − Uv . (19)

3.2.2 A set of macroscopic conservative equations

Our starting microscopic model is equation (11). The right hand side of this
equation is the Boltzmann collision integral for hard-sphere molecules. During
collisions, mass, momentum and energy are conserved, according to classical
dynamics. These three quantities are collision invariants in the description.
Our new microscopic parameter, v, is not at first sight a collision invariant.
However, strictly speaking, a collision in our modelling means a change only
in the momentum of the molecules. The variable v describes the remaining
information about the microscopic system, in particular the changes in the ar-
rangement of surrounding molecules. It is therefore not involved in the change
of momentum of a target molecule, so we can consider this variable as invariant
under the vanishing collision time.

We derive macroscopic equations in the following way. Consider a function
ψ ≡ ψ(ξ, v), that is, a microscopic property of a molecule represented as a
function of the velocity and v. Then we take the integral of equation (11)
over the velocity space and over the configuration space (i.e. over v) after
multiplication by ψ assuming, obviously, that the moments involved in these
integrations exist. For conciseness, the detailed calculations are presented in
Appendix A.

For ψ = v, the macroscopic equation obtained is,

∂Anv̄

∂t
+ ∇ · [Anv̄Um] + ∇ · [AnJv] = AnW, (20)

where the quantity Jv denotes a flux of volume, defined with the velocity C
by

Jv =
1

An

∫ ∫

vCfdξdv . (21)

For ψ = 1, ξ and ξ2, we obtained, respectively,

∂An

∂t
+ ∇ · [AnUm] = 0 , (22)

∂AnUm

∂t
+ ∇ · [AnUmUm] + ∇ · [AnP] = 0, (23)
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and

∂

∂t

[

1

2
AnU

2

m

]

+
∂

∂t
[Anein] + ∇ ·

[

1

2
AnU

2

mUm + AneinUm

]

(24)

+∇ · [AnP · Um] + ∇ · [Anq] = 0 ,

where the quantities P, ein and q denote:

Pij =
1

An

∫ ∫

CiCjfdξdv , (25)

ein =
1

An

∫ ∫ 1

2
C2fdξdv , (26)

q =
1

An

∫ ∫

1

2
C2Cfdξdv . (27)

In total, we have a set of four macroscopic equations. The quantities P, ein

and q, which are all written using the peculiar velocity C that is based on the
mass-velocity Um, are at this stage simply quantities appearing through the
mathematical derivation of the macroscopic equations.

Equation (22) corresponds to the classical continuity equation. However, we
note that this equation can be derived directly from equation (10) if the inter-
action potential is independent of the microscopic velocity of the molecules.
In other words, this equation does not necessarily require Boltzmann collision
modelling, with its assumption of conservation of mass during collisions. It
cannot be said to be an equation describing the evolution of the mass-density
of the medium as it involves only the average velocity of molecules and the
reduced probability An. As mentioned earlier, two real interacting molecules
change their positions during the interaction. Although conservation of mass
evidently still holds in such a situation, this alone does not prescribe the spa-
tial evolution of the mass-density of the medium in which the two molecules
are interacting. The changes of position during interactions are required in a
complete description of the evolution of the mass-density of the medium.

Furthermore, considering a set of N arbitrary molecules, NAn may be re-
garded as a number density, and NAndX as a probable number of molecules
around the position X at time t. In this case, the above set of macroscopic
equations remains the same, as only a certain multiplication factor appears in
the distribution function. However, our new kinetic description departs from
a statistically-independent system because the variable v that describes the
mass-density of the medium is in fact a correlation parameter. A first con-
sequence of this is that our equations (20) and (22) distinguish between the
variations of the mass-density of the medium and a vanishing divergence of
the mass-velocity, the latter being interpreted in statistical mechanics as “in-
compressibility of the flow” (and not the fluid).
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4 An unusual transport term

Using the definitions of the mean velocities and peculiar velocities in equations
(16) to (19), the following identities can be easily proved:

∫ ∫

C ′fdξdv = −An(Uv − Um) ,
∫ ∫

vC ′fdξdv = 0 , (28)

and
Anv̄Uv =

∫ ∫

vUmfdξdv +
∫ ∫

vCfdξdv . (29)

So equation (21) can be re-written:

Jv = v̄ (Uv − Um) . (30)

In equation (30), Jv characterizes a macroscopic motion defined by (Uv −Um),
given that Um and Uv are both macroscopic velocities by definition. The flux
Jv therefore acts like a convective flux in which the convected element is the
volume transported at the macroscopic velocity (Uv −Um), which will be non-
zero if mass-density variations exist in the medium. Therefore, we attribute
this velocity (Uv − Um) to macroscopic expansion and compression of the
medium that the mean velocity Um does not encompass.

If δV represents the macroscopic change of volume of a fluid element over time
δt, then an approximate expansion/compression speed is given by, ‖ v̄−1Jv ‖≈
δ(V 1/3)/δt , where ‖ . ‖ denotes the modulus of a vector. The velocity Jv is
oriented in the direction from high density to low density in the case of an
expansion, and vice versa for compression.

The macroscopic motion characterized by the flux Jv affects the classical inter-
pretation of “convective fluxes”. In our description, the term “convective flux”
will include the macroscopic motion defined through the flux Jv, as well as
that motion traditionally described by the average velocity Um. In other words,
a diffusive flux, which is due to purely random molecular motions, is a flux
in which neither the motion Um nor the macroscopic expansion/compression
motion described by Jv exist. A diffusive flux of a property ψ should therefore
be written using:

∫ ∫

[ξ −
1

v̄
Jv − Um]ψdvdξ =

∫ ∫

C ′ψdvdξ. (31)

Now, let us consider the following expression,

Jρ̄ =
1

An

∫ ∫

ρ̄C ′fdvdξ =
1

Anv̄

∫ ∫

MC ′fdvdξ . (32)

According to the definition of diffusive fluxes, the flux Jρ̄ corresponds to a
diffusive flux of mass; strictly speaking, the element undergoing diffusion in
this equation is the mass-density ρ̄ from equation (15).
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Using the definitions of the mean velocities, equations (16) and (17), with the
definition of the peculiar velocity C ′ in equation (19), it can be shown that

Jρ̄ = −ρ̄(Uv − Um) . (33)

Combining equations (33) and (30), we obtain

1

ρ̄
Jρ̄ = −

1

v̄
Jv . (34)

Equation (34) is a symmetrical relation between the flux of volume, Jv, and
the diffusive flux Jρ̄.

As Jρ̄ is a diffusive flux, according to equation (32), we apply the phenomeno-
logical Fick’s law of diffusion, so that

Jρ̄ = −κm∇ρ̄ , (35)

where κm is the mass diffusion coefficient (strictly speaking, the mass-density
diffusion coefficient). From equation (34) we then obtain,

Jv =
κmv̄

ρ̄
∇ρ̄ . (36)

In summary, our unusual flux Jv embodies both a diffusive and a convective
nature. We note that κm has the dimension of (length)2/time, which is the
same dimension as kinematic viscosity.

5 Diffusive fluxes of momentum and energy

5.1 The pressure tensor, heat flux and internal energy

Diffusive fluxes are those from which all macroscopic motions, including macro-
scopic expansion/compression have been removed. These fluxes should there-
fore be associated with the velocity C ′ defined in equation (19), which may
also be written,

C ′ = ξ − Um −
1

v̄
Jv . (37)

Furthermore, equations (18), (19) and (30) yield

C − C ′ = Uv − Um =
1

v̄
Jv . (38)

We can then express the fluxes q and Pij, and the quantity ein from equations
(25) to (27), which were simply quantities defined using the peculiar velocity
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C, using the following decomposition:

C = C ′ + (C − C ′) = C ′ + (Uv − Um) . (39)

So Pij(t, X) from equation (25) with equation (39) becomes

Pij = P′

ij −
1

v̄2
(JvJv)ij , (40)

where JvJv ≡ (JvJv)ij is the second-order tensor obtained by the product of
the coordinate components of vector Jv, i.e. (JvJv)ij = (Jv)i(Jv)j , and P′ is
the diffusive momentum flux tensor per unit mass,

P′

ij(t, X) =
1

An

∫ ∫

C ′

iC
′

jfdvdξ . (41)

A scalar pressure p′ can then be introduced through the sum of the three
diagonal terms of P′

ij, using the unit volume of gas, i.e.

3p′ =
MP′

ii

v̄
. (42)

From equations (26) and (39), ein becomes

ein = e′in −
1

2v̄2
J2

v , (43)

where the actual internal energy e′in per unit mass is given as

e′in =
1

An

∫ ∫

1

2
C ′2fdξdv . (44)

A temperature T ′ can also then be defined:

3

2
kT ′ = Me′in . (45)

Equations (42), (44) and (45) imply

p′v̄ = kT ′ . (46)

However, it should be born in mind that equation (46), which resembles the
ideal gas formula, follows on from the definitions of temperature and pressure,
and these two variables both ultimately describe the internal energy. There-
fore, the main quantity that should be considered is the internal energy e′in,
rather than systematically taking the gas to be perfect. For example, when
considering an isothermal flow, equation (42) should be used while the equa-
tion for the internal energy will give an equation for the pressure irrespective
of an ideal gas assumption.
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Using equation (39), the flux q, defined in equation (27), is re-written

q(t, X) =
1

An

∫ ∫

1

2
[C ′ + (Uv − Um)]

2
C ′fdξdv+(Uv−Um)

1

An

∫ ∫

1

2
C2fdξdv .

(47)
Then equations (28), (38) and (43) yield

q = q′ +
1

v̄
P′ · Jv +

1

v̄

(

e′in −
1

v̄2
J2

v

)

Jv , (48)

where the diffusive energy flux vector per unit mass, q′ ≡ q′(t, X), is given by

q′ =
1

An

∫ ∫

1

2
C ′2C ′fdξdv . (49)

Equation (43) describes the total internal energy ein of a group of gaseous
molecules as being composed of a “heat energy”, e′in, and an elastic energy
component driven by Jv. If we imagine this group of molecules moving from
a high density region to a low density region, this will cause a dilatation of
the group provided the quantity of mass, i.e. the number of molecules in the
group, is not allowed to change. Molecules may move out of or into the group
but the amount of mass should remain the same. According to the first law of
thermodynamics, the heat energy must exclude any kind of potential energy.
In equation (43) the term involving Jv is a potential energy because it is
related to the density gradient or spatial distribution, and so represents the
dilatation energy of the group. So the actual heat energy should correspond
here to e′in, not ein.

Let us consider a mechanical compression (or an expansion against a piston)
of argon gas. The molecular mass of argon is M = 6.63 × 10−26 kg and the
Boltzmann constant is k = 1.38 × 10−23 J/K. At a piston compression speed
equivalent to v̄−1Jv = 50 m/s, the difference in temperature due to the Jv

term appearing in equation (43) is 4.0 K. This is of the same order as a typi-
cal temperature variation during free expansion of a gas [26]. The differences
produced by including Jv in the definitions of the thermodynamic parameters
(temperature and pressure) will not be important in typical every-day gas
flows, which is in agreement with the classical viewpoint about potential ener-
gies in the framework of the thermodynamics of near-equilibrium dilute gases.
However, the impact of the diffusive flux Jv, through the set of hydrodynamic
equations, on highly non-equilibrium flows requires more attention.

5.2 Constitutive models and the final set of hydrodynamic equations

The hydrodynamic model in our new description is the four macroscopic equa-
tions (20), (22), (23) and (24), together with equations (40), (43), (45) and
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(48). The diffusive fluxes, according to the definition in equation (31), corre-
spond to P′ for the momentum and q′ for the energy. To close our system,
we can apply the phenomenological laws of diffusion to model these fluxes at
first order. These are written similarly to the classical Newtonian law for the
stress tensor within the pressure tensor, P′, and the analogous Fourier’s law
for the heat flux, q′, i.e.

MP′

ij

v̄
= p′δij − µ′

(

∂Uvi

∂Xj
+
∂Uvj

∂Xi

)

− η′
∂Uvk

∂Xk
δij , (50)

Mq′

v̄
= −κ′h∇T

′ , (51)

Jv =
κmv̄

ρ̄
∇ρ̄ , (52)

with µ′ a dynamic viscosity, κ′h a heat conductivity, η′ a bulk viscosity, κm the
mass diffusion coefficient, all to be determined in this new framework. Note
that the macroscopic motion, from which the momentum flux P′ is defined as
a diffusive flux, is Uv = Um + v̄−1Jv. Therefore the phenomenological law of
diffusion used to express P′ is applied with a gradient taken over Uv, as written
in equation (50). So momentum diffusion is not generated by the gradient of
the mass-velocity Um only, but also can be generated by a gradient in the
macroscopic expansion/compression (Uv − Um). By definition of the pressure
equation (42), the tensor MP′

ij/v̄−p
′δij is traceless; this implies 2

3
µ′ +η′ = 0.

Also, in the expressions for the stress tensor and heat flux, the momentum
flux density and the heat energy flux density are both based on the unit of
real volume of the gas that is v̄.

The complete set of new hydrodynamic equations is rewritten below, for con-
venience:

Continuity

DAn

Dt
= −An∇ · Um , (53)

Mass-density

Dρ̄

Dt
=
ρ̄2

M

[

1

An
∇ · [AnJv] −W

]

, (54)

Momentum

An
DUm

Dt
= −∇ · An

(

P′ −
1

v̄2
JvJv

)

, (55)
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Energy

An
D

Dt

[

1

2
U2

m + e′in −
1

2v̄2
J2

v

]

= (56)

−∇ · An

[(

P′ −
1

v̄2
JvJv

)

· Um

]

−∇ · An

[

q′ +
1

v̄
P′ · Jv +

1

v̄

(

e′in −
1

v̄2
J2

v

)

Jv

]

.

where we denote the material derivative D/Dt ≡ ∂/∂t+Um · ∇. (See Appendix
B for variant expressions of these macroscopic and hydrodynamic equations.)

These equations are solved for five unknown fluid macroscopic parameters:
the probability density An, the mass-density, ρ̄, the mass-velocity, Um, the
pressure, p′, and the internal energy, e′in. The equation set is then closed by the
constitutive model equations (50) to (52), Me′in = (3/2)kT ′ or p′ = (2/3)ρ̄e′in,
and Uv = Um + v̄−1Jv.

In the momentum equation (55), the macroscopic velocity on the left-hand-side
is the mass-velocity, Um, while on the right-hand-side, according to equation
(50), appears the volume velocity, Uv. This modification to the momentum
equation introduced by our new hydrodynamic description, when compared
to the usual Navier-Stokes equation, recalls a recent modification proposed by
Brenner [27]. That is to say, the replacement of the mass velocity appearing
in the stress tensor by another velocity that depends on density gradient.

In the energy equation (56), in the heat flux and dissipation terms, appears a
contribution due to work done by a variation of volume. Because, in this new
kinetic model, volume variations refer to the domain occupied by a group of
molecules, we interpret these complementary work terms as due to variations
occurring through the boundary of the local domain occupied by a group of
molecules.

5.3 An expression for W

In our microscopic modelling, W = δv/δt appears as the rate of change of
the free volumes between molecules. According to our description, this term
manifests the cohesive nature of the molecules because the medium should
not be described simply by the dynamics of a single molecule. Furthermore,
the choice of the “volume” in our representation is not arbitrary. Volume
is a configurational indication parameter in both continuum fluid mechanics
and classical thermodynamics. In these cases, a change in v is indicated by
changes in a property of the ensemble. Because using Boltzmann modelling
precludes an exact description of the field interactions between molecules, we
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assume that the rate of change of volume manifests through the variation of
the thermodynamic properties, such as temperature and pressure (which are
more likely to represent collective properties). We therefore write,

W =
δv

δt
= v̄

(

1

v̄

∂v

∂T ′

)

p′

dT ′

dt
+ v̄

(

1

v̄

∂v

∂p′

)

T ′

dp′

dt
+ ... , (57)

or

W = v̄α
dT ′

dt
− v̄χ

dp′

dt
+ ... , (58)

with compressibility coefficients defined by:

α =

(

1

v̄

∂v

∂T ′

)

p′

, χ = −

(

1

v̄

∂v

∂p′

)

T ′

. (59)

Using the above approximation for W , the mass-density equation (54) can be
rewritten:

Dρ̄

Dt
=

ρ̄2

MAn
∇ · [AnJv] − ρ̄

(

α
dT ′

dt
− χ

dp′

dt

)

. (60)

In this equation, the left-hand-side involves the material derivative based on
Um, while on the right-hand-side is a total derivative which is not systemat-
ically equal to this material derivative. We express the total variation at the
macroscopic scale using the velocity Uv, rather than the mass velocity Um, i.e

d

dt
≡

∂

∂t
+ Um · ∇ +

1

v̄
Jv · ∇ , (61)

that is to say, following both the average mass motion and dilatation motion
of the gas. We therefore have from equation (60)

1

ρ̄

Dρ̄

Dt
=

ρ̄

MAn
∇ · [AnJv] − α

(

DT ′

Dt
+

1

v̄
Jv · ∇T

′

)

+ χ

(

Dp′

Dt
+

1

v̄
Jv · ∇p

′

)

.

(62)
By using equation (46) this equation may be re-written,

ρ̄

MAn
∇ · [AnJv] +

1

v̄ρ̄
Jv · ∇ρ̄ =

(

1

p′
− χ

)

dp′

dt
−
(

1

T ′
− α

)

dT ′

dt
. (63)

If we associate the microscopic to the macroscopic rate of change of v (i.e.
dv̄/dt = δv/δt), according to equation (46) the coefficients α and χ may then
be given, respectively, by 1/T ′ and 1/p′. In this case, equation (63) reduces to

ρ̄

MAn

∇ · [AnJv] +
1

v̄ρ̄
Jv · ∇ρ̄ = 0, (64)

which depends on the flow, i.e. Um, via An. Equation (64) is a diffusion type
of equation for the mass-density ρ̄ if we eliminate the motion induced by Um
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in the flow by setting An to be a constant. The advection field in this diffusion
equation is given by Jv, which confers a unique aspect to this diffusion equation
and confirms again both the convective and diffusive characters of Jv discussed
previously.

Finally, our new hydrodynamic equations (53) to (56) coincide with the Navier-
Stokes set of equations when there are no mass-density variations, i.e. when
Jv vanishes as well as W .

6 Applications

6.1 Density profiles in a steady state heat transfer problem

A first test case of our new hydrodynamic model is the prediction of mass-
density profiles in rarefied gas flow in the continuum-transition regime. The
test configuration is the heat conduction problem between two parallel plates
at different temperatures, and is presented, for example, in reference [6]. There
have been several previous investigations of this configuration because of the
great interest in heat transfer descriptions and heat conductivity predictions
in the continuum-transition regime, and because results from many previous
theoretical models based on Boltzmann approximations provide hardly an
acceptable result when compared with experiments.

Experimental data for the mass-density is determined by observing the lu-
minescence produced by a high-energy electron beam traversed between the
plates [6]. In [5] a finite-difference analysis of the nonlinear Boltzmann equa-
tion for hard-sphere molecules was used to solve the same flow configuration.
According to [5], “there is a considerable difference between the mass-density
distribution by the full Boltzmann equation and the experiments”.

For this flow configuration, the classical set of Navier-Stokes equations reduce
to the following: the continuity equation vanishes, the pressure is constant
and the temperature profile is linear (from the heat conduction equation).
So, strictly speaking, the three conventional hydrodynamic equations do not
predict any actual mass-density profile.

We then consider our new hydrodynamic equations in a one-dimensional steady
state configuration with Um = 0 (i.e. no gross mass motion). The x-axis will
be normal to the plates. The continuity equation (53) vanishes and equation
(64) gives,

ρ̄
∂

∂x

(

κm

ρ̄2

∂ρ̄

∂x

)

+ κm

(

1

ρ̄

∂ρ̄

∂x

)2

= 0. (65)
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The experiment [6] was designed to avoid convection effects; in equation (65)
the term involving the square of spatial derivatives of the mass-density came
from the advection component appearing in equation (64), therefore the elim-
ination of any convection effects allows us to neglect this term. Equation (65)
then reduces to,

∂2ρ̄

∂x2
= 0, (66)

which has the solution
ρ̄(x) = Ct2 + xCt1. (67)

Note that this mass-density profile is linear, and is obtained from the diffu-
sion equation of the mass-density (not from an equation of state). According to
experimental data [5], the mass-density profiles are clearly linear. Boundary
conditions are required for the mass-density to specify the integration con-
stants Ct1 and Ct2 if we are to provide a complete analysis using our model.

From equation (67), we can deduce the expression for the mean-free-volume
around molecules, v̄, through the relation ρ̄ = M/v̄. As Um is zero, the profile
for Uv = (Uvx

, 0, 0) is found using (30) and (52), i.e.

Uvx
(x) = κm

Ct1

ρ̄(x)
. (68)

The momentum equation (55) with equations (50) and (52) gives,

∂

∂x





p′

ρ̄
−

4

3

µ

ρ̄

∂

∂x

(

κm

ρ̄

∂ρ̄

∂x

)

−

(

κm

ρ̄

∂ρ̄

∂x

)2


 = 0. (69)

Following the previous analysis that reduced the mass-density equation to
equation (66), the momentum equation reduces to,

∂

∂x

(

p′

ρ̄

)

= 0. (70)

Note at this stage that the perfect gas formula, equation (46), is a conse-
quence of our definition of pressure p′ and temperature T ′. That is to say,
both temperature and pressure are defined from the same quantity, which is
the internal energy, through equations (42) and (45). Therefore, the interpre-
tation of equation (70) is that the pressure energy is constant and not that
there is a constant temperature (as would follow from the perfect gas formula).

Furthermore, the full momentum equation (69) is written in terms of the
velocity Uv = v̄−1Jv, as

∂

∂x

[

p′

ρ̄
−

4

3

µ

ρ̄

∂Uvx

∂x
− U2

vx

]

= 0, (71)
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which shows that the full expression of the conservation equation of the pres-
sure energy is

p′

ρ̄
− U2

vx
−

4

3

µ

ρ̄

∂Uvx

∂x
= Ctp, (72)

and the full pressure profile, using equation (67), therefore

p′(x) = Ct2Ctp + Ct1Ctpx+ κ2

m

C2
t1

ρ̄
−

4

3

µκm

ρ̄2
C2

t1, (73)

where here, and below, Ct... are integration constants.

The energy equation (56) reduces to,

∂

∂x

[

κ′h
ρ̄

∂T ′

∂x
−

5

2
Uvx

p′

ρ̄
+

4

3

µ

ρ̄
Uvx

∂Uvx

∂x
+ U3

vx

]

= 0, (74)

whence we can derive the temperature profile (using the mass-density and
pressure profiles):

T ′(x) = CtT2 +
CtT1Ct2

κ′h
x+

5

2

κm

κ′h
Ct1Ctpx+

CtT1Ct1

2κ′h
x2 −

3

2

κ3
m

κ′hρ̄
C2

t1 +
µκ2

m

κ′hρ̄
2
C2

t1.

(75)
Our new hydrodynamic model impacts on the pressure and temperature pro-
files mainly through the mass-density slope, Ct1. In the approximation of an
incompressible gas, where the mass-density could be viewed as constant, we
have Ct1 = 0; then equations (73) and (75) give, respectively, constant pres-
sure and linear temperature profiles. These are the basic solutions known from
the Navier-Stokes-Fourier set of equations.

More generally, however, our new model — even if we disregard any contribu-
tions from the volume diffusion terms (i.e. disregard any terms with coefficient
κm) — predicts a linear pressure profile and a parabolic temperature profile,
due to mass-density variations. The corrections introduced by our full model
can be evaluated only if the temperature gradient throughout the domain is
such that variations of mass-density affect the temperature profile: in other
words, when the temperature difference between the two plates is large.

The classical hydrodynamic approach to correcting the profiles in the continuum-
transition regime is to introduce a temperature-jump at the boundaries, with
the restriction that ∆T ′/T ′ is small [28]. However, in our new hydrodynamic
model the profile correction results from important variations of thermody-
namic properties. Moreover, ∆T ′/T ′ is not always restricted to small values
and the correction to the temperature distribution is not always due to bound-
ary effects, as is also shown in the following example.
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6.2 Shock waves and large temperature jumps

Consider a shock wave in a rarefied gas flow, within which a rapid variation
of temperature (at constant pressure) exists over a distance of the order of
a molecular mean free path, λm, which is of the same order of magnitude
as the system characteristic length defined by the shock density gradient. In
this case, we approximate the expansion/compression by ‖ v̄−1Jv ‖≈ λm/τv
where τv is the characteristic time of diffusion of volume (or mass-density).
Accordingly, the temperature difference induced by the diffusive component
Jv in equation (43) is,

∆T ′ ≈
M

3k

(

λm

τv

)2

. (76)

If we hypothesise that the diffusion time τv is similar to the diffusion time
for energy, then the ratio λm/τv is close to the thermal speed and we have
(λm/τv)

2 ≈ 3kT ′/M . Consequently, the temperature difference ∆T ′ ≈ T ′, i.e.
the same order of magnitude as the kinetic temperature T ′ (the temperature
commonly identified with the flow).

This temperature difference is similar in magnitude to those observed in high
speed rarefied gas flows during space vehicle re-entry, for which the classical
theory of surface temperature jump is known to have serious shortcomings
[29].

7 Conclusions

We have discussed the mathematical representation of a dilute gas, and in-
troduced a modified kinetic description that includes a supplementary spatial
configuration parameter. In doing this, we relaxed some aspects of the mod-
elling of spatial configurations of molecules that are dictated by the standard
description of the Boltzmann kinetic equation. The set of macroscopic conser-
vation equations derived from our modified kinetic approach comprises four
equations rather than the usual three; an evolution equation purely of the
mass-density is added to the set of three conservation equations, while the
classical continuity equation is replaced by a conservation equation for the
reduced probability density. The equation for the mass-density turns out to
be a mass-diffusion equation. We therefore distinguish between conservation
of mass and the variation of the mass-density as a thermodynamic parameter
to account for any variation in the volume occupied by the medium.

An unconventional form of transport, having both convective and diffusive
characteristics, appeared, which led us to re-classify the diffusive and convec-
tive fluxes. As a result, we obtained a hydrodynamic model in which contri-
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butions due to mass-density variations appear in the momentum and energy
equations.

Our new model should show most departure from conventional fluid dynamic
descriptions in micro flow cases, gas flows involving sensitive mass-density
variations (such as shock waves), and highly compressible rarefied gas flows.
Some qualitative comparisons between the new description and experimen-
tal observations have been presented above; future work will include a more
complete quantitative analysis, in addition to the investigation of boundary
conditions.
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A Conservation equations from the modified kinetic equation

We present here the derivation of macroscopic equations from our kinetic
equation (11). This procedure is similar to the classical one: equation (11)
is multiplied by the microscopic quantities v, M , (Mξ), (Mξ2) and then the
result is integrated over dv and dξ. In this process it should be kept in mind
that t, X, ξ, and v are independent variables, while any mean value of a
microscopic quantity given through definition (13) depends on t and X.

• Conservation of volume. Multiplying equation (11) by the microscopic ele-
ment v, and integrating over v and ξ, we obtain,

∫ ∫

v
∂f

∂t
dvdξ +

∫ ∫

v(ξ · ∇)fdvdξ +W
∫ ∫

v
∂f

∂v
dvdξ = 0, (A.1)

where the collision integral term vanishes. Since t, X, ξ and v are indepen-
dent variables, this equation reduces to

∫ ∫ ∂vf

∂t
dvdξ +

∫ ∫

∇ · (vfξ)dvdξ +W
∫ ∫

v
∂f

∂v
dvdξ = 0, (A.2)
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which can also be written,

∂Anv̄

∂t
+
∫ ∫

∇ · (vfUm)dvdξ +
∫ ∫

∇ · (vfC)dvdξ +W
∫ ∫

v
∂f

∂v
dvdξ = 0.

(A.3)
Using partial integration and the integrability condition, limv→+∞(vf) = 0,
the third integral term in relation (A.3) gives

W
∫ ∫

v
∂f

∂v
dvdξ = −AnW, (A.4)

and relation (A.3) can then be written

∂Anv̄

∂t
+ ∇ · [Anv̄Um] + ∇ · [

∫ ∫

(vCf)dvdξ] −AnW = 0. (A.5)

Finally, if we denote

Jv =
1

An

∫ ∫

(vCf)dvdξ , (A.6)

then the first macroscopic equation obtained is an evolution equation for
the volume, and is written

∂Anv̄

∂t
+ ∇ · [Anv̄Um] + ∇ · [AnJv] = AnW. (A.7)

• Conservation of mass. Multiplying equation (11) by the molecular mass M ,
and integrating over v and ξ, we obtain:

∫ ∫

M
∂f

∂t
dvdξ +

∫ ∫

M(ξ · ∇)fdvdξ +W
∫ ∫

M
∂f

∂v
dvdξ = 0, (A.8)

where the collision integral term vanishes. The third integral term in equa-
tion (A.8) is zero owing to the generalized function character of f , i.e.
limv→0 f = 0 and limv→+∞ f = 0. The second macroscopic equation ob-
tained in this case is then:

∂MAn

∂t
+ ∇ · [MAnUm] = 0, (A.9)

Combining equation (A.9) with the volume equation (A.7) gives

∂v̄

∂t
+ Um · ∇v̄ +

1

An
∇ · [AnJv] = W . (A.10)

Using the density ρ̄ = M/v̄, this can be rewritten:

(

∂ρ̄

∂t
+ Um · ∇ρ̄

)

−
ρ̄2

MAn

∇ · [AnJv] +
ρ̄2

M
W = 0. (A.11)
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• Conservation of momentum. Multiplying equation (11) by Mξ, and inte-
grating over v and ξ, we obtain

∫ ∫

Mξ
∂f

∂t
dvdξ +

∫ ∫

Mξ(ξ · ∇)fdvdξ +W
∫ ∫

Mξ
∂f

∂v
dvdξ = 0, (A.12)

where the collision integral term vanishes. As t and ξ are independent vari-
ables, this equation can be written in the form:

∫ ∫

∂Mfξ

∂t
dvdξ +

∫ ∫

∇ · (Mfξiξj)dvdξ +W
∫ ∫

Mξ
∂f

∂v
dvdξ = 0, (A.13)

where ξiξj is the second order tensor constituted by the elements (ξiξj).
Here also, the third integral term in relation (A.13) is zero owing to the
generalized function character of f , i.e. limv→0 ξf = 0 and limv→+∞ ξf = 0.
Then, using the definition of the peculiar velocity C, we obtain the third
conservation equation:

∂MAnUm

∂t
+ ∇ · [MAnUmUm] + ∇ · [MAnP] = 0, (A.14)

where we denote P ≡ Pij(t, X) the flux:

Pij(t, X) =
1

An

∫ ∫

(CiCj)fdvdξ. (A.15)

Using the mass conservation equation (A.9), the momentum equation may
be written :

An

(

∂Um

∂t
+ Um · ∇Um

)

+ ∇ · [AnP] = 0. (A.16)

• Conservation of energy. Multiplying equation (11) by 1

2
Mξ2 and integrating

over v and ξ, we obtain

∫ ∫ 1

2
Mξ2

∂f

∂t
dvdξ +

∫ ∫ 1

2
Mξ2(ξ · ∇)fdvdξ +W

∫ ∫

Mξ2
∂f

∂v
dvdξ = 0,

(A.17)
which, following the independent variable properties, becomes

∫ ∫

1

2
M
∂fξ2

∂t
dvdξ +

∫ ∫

1

2
M∇ · (ξ2fξ)dvdξ +W

∫ ∫

Mξ2
∂f

∂v
dvdξ = 0.

(A.18)
Here also, owing to the properties of f , i.e. limv→0 ξ

2f = 0 and limv→+∞ ξ2f =
0, the third integral term vanishes. Using the definitions of the velocities Um

and C, we therefore have

∂

∂t

[

1

2
MAnU

2

m

]

+
∂

∂t
[MAnein] + ∇ ·

[

1

2
MAnU

2

mUm +MAneinUm

]

(A.19)

+∇ · [MAnP · Um] + ∇ · [MAnq] = 0,
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where we have introduced the quantity ein that is given through:

ein(t, X) =
1

An

∫ ∫

1

2
C2fdξdv , (A.20)

and the flux q, given by:

q(t, X) =
1

An

∫ ∫

1

2
C2Cfdξdv . (A.21)

Equation (A.19) is the mean energy evolution equation. By using the mass
conservation equation (A.9), the energy equation may be rewritten:

An
∂

∂t

[

1

2
U2

m + ein

]

+AnUm · ∇
[

1

2
U2

m + ein

]

(A.22)

+∇ · [AnP · Um] + ∇ · [Anq] = 0 .

B Other forms of the new hydrodynamic equations

Multiplying the momentum equation (55) scalarly by Um, we obtain

AnUm ·
DUm

Dt
= −Um ·

[

∇ · An

(

P′ −
1

v̄2
JvJv

)]

, (B.1)

which can be rewritten,

An
1

2

DU2
m

Dt
= −∇ ·

[

An

(

P′ −
1

v̄2
JvJv

)

· Um

]

+ An

(

P′ −
1

v̄2
JvJv

)

: ∇Um .

(B.2)

Therefore, the energy equation (56) can also be re-written by using this ex-
pression of the momentum equation as,

An
D

Dt

[

e′in −
1

2v̄2
J2

v

]

+ ∇ · An

[(

e′in −
1

v̄2
J2

v

)

1

v̄
Jv

]

= (B.3)

−∇ · An

[

q′ + P′ ·
1

v̄
Jv

]

− An

(

P′ −
1

v̄2
JvJv

)

: ∇Um .
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