68 research outputs found

    Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp.

    Get PDF
    Background: The cosmopolitan moon jelly Aurelia is characterized by high degrees of morphological and ecological plasticity, and subsequently by an unclear taxonomic status. The latter has been revised repeatedly over the last century, dividing the genus Aurelia in as many as 12 or as little as two species. We used molecular data and phenotypic traits to unravel speciation processes and phylogeographic patterns in Aurelia. Results: Mitochondrial and nuclear DNA data (16S and ITS-1/5.8S rDNA) from 66 world-wide sampled specimens reveal star-like tree topologies, unambiguously differentiating 7 (mtDNA) and 8 (ncDNA) genetic entities with sequence divergences ranging from 7.8 to 14% (mtDNA) and 5 to 32% (ncDNA), respectively. Phylogenetic patterns strongly suggest historic speciation events and the reconstruction of at least 7 different species within Aurelia. Both genetic divergences and life history traits showed associations to environmental factors, suggesting ecological differentiation forced by divergent selection. Hybridization and introgression between Aurelia lineages likely occurred due to secondary contacts, which, however, did not disrupt the unambiguousness of genetic separation. Conclusions: Our findings recommend Aurelia as a model system for using the combined power of organismic, ecological, and molecular data to unravel speciation processes in cosmopolitan marine organisms. © 2002 Schroth et al; licensee BioMed Central Ltd. Verbatim copying and redistribution of this article are permitted in any medium for any non-commercial purpose, provided this notice is preserved along with the article's original URL: http://www.biomedcentral.com/1471-2148/2/

    Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp

    Get PDF
    BACKGROUND: The cosmopolitan moon jelly Aurelia is characterized by high degrees of morphological and ecological plasticity, and subsequently by an unclear taxonomic status. The latter has been revised repeatedly over the last century, dividing the genus Aurelia in as many as 12 or as little as two species. We used molecular data and phenotypic traits to unravel speciation processes and phylogeographic patterns in Aurelia. RESULTS: Mitochondrial and nuclear DNA data (16S and ITS-1/5.8S rDNA) from 66 world-wide sampled specimens reveal star-like tree topologies, unambiguously differentiating 7 (mtDNA) and 8 (ncDNA) genetic entities with sequence divergences ranging from 7.8 to 14% (mtDNA) and 5 to 32% (ncDNA), respectively. Phylogenetic patterns strongly suggest historic speciation events and the reconstruction of at least 7 different species within Aurelia. Both genetic divergences and life history traits showed associations to environmental factors, suggesting ecological differentiation forced by divergent selection. Hybridization and introgression between Aurelia lineages likely occurred due to secondary contacts, which, however, did not disrupt the unambiguousness of genetic separation. CONCLUSIONS: Our findings recommend Aurelia as a model system for using the combined power of organismic, ecological, and molecular data to unravel speciation processes in cosmopolitan marine organisms

    Tailored bainitic-martensitic microstructures by means of inductive surface hardening for AISI4140

    Get PDF
    Inductive surface hardening processes are widely used in the manufacturing of automotive parts. They combine short process times with high economic and energy efficiency. Because of their high surface hardness, induction hardened steel parts feature beneficial wear resistance and also good fatigue properties due to the induced compressive residual stresses in the surface. Considering the positive effects on the mechanical properties by creating a bainitic-martensitic microstructure, outlined by severel authors, this study includes the implementation of a temperature controlled inductive surface hardening process on a conventional hardening machine. Therefore an innovative inductor design, which allows a controlled sample cooling is presented. Supported by dilatometric studies as well as different heat treatment strategies, limitations are identified to gain a profund process understanding. Hereby an accelerated bainite formation after short time austenitization is detected. By using different heat treatment strategies, the fraction of the bainitic phase can be adjusted in the surface of the part made of AISI 4140. The results of this innovative heat treatment method are compared to short time inductive hardening and tempering processes regarding microstructure, hardness and residual stresses. The generated surface layer states, including mixed microstructures, show promising properties resulting in a possible enhancement of the fatigue strength of induction hardened parts

    ExerTrack - Towards Smart Surfaces to Track Exercises

    Get PDF
    The concept of the quantified self has gained popularity in recent years with the hype of miniaturized gadgets to monitor vital fitness levels. Smartwatches or smartphone apps and other fitness trackers are overwhelming the market. Most aerobic exercises such as walking, running, or cycling can be accurately recognized using wearable devices. However whole-body exercises such as push-ups, bridges, and sit-ups are performed on the ground and thus cannot be precisely recognized by wearing only one accelerometer. Thus, a floor-based approach is preferred for recognizing whole-body activities. Computer vision techniques on image data also report high recognition accuracy; however, the presence of a camera tends to raise privacy issues in public areas. Therefore, we focus on combining the advantages of ubiquitous proximity-sensing with non-optical sensors to preserve privacy in public areas and maintain low computation cost with a sparse sensor implementation. Our solution is the ExerTrack, an off-the-shelf sports mat equipped with eight sparsely distributed capacitive proximity sensors to recognize eight whole-body fitness exercises with a user-independent recognition accuracy of 93.5 % and a user-dependent recognition accuracy of 95.1 % based on a test study with 9 participants each performing 2 full sessions. We adopt a template-based approach to count repetitions and reach a user-independent counting accuracy of 93.6 %. The final model can run on a Raspberry Pi 3 in real time. This work includes data-processing of our proposed system and model selection to improve the recognition accuracy and data augmentation technique to regularize the network

    Phylogenetics of Trachylina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematical taxa

    Get PDF
    Some of the most interesting and enigmatic cnidarians are classified within the hydrozoan subclass Trachylina. Despite being relatively depauperate in species richness, the clade contains four taxa typically accorded ordinal status: Actinulida, Limnomedusae, Narcomedusae and Trachymedusae. We bring molecular data (mitochondrial 16S and nuclear small and large subunit ribosomal genes) to bear on the question of phylogenetic relationships within Trachylina. Surprisingly, we find that a diminutive polyp form, Microhydrula limopsicola (classified within Limnomedusae) is actually a previously unknown life stage of a species of Stauromedusae. Our data confirm that the interstitial form Halammohydra sp. (Actinulida) is derived from holopelagic direct developing ancestors, likely within the trachymedusan family Rhopalonematidae. Trachymedusae is shown to be diphyletic, suggesting that the polyp stage has been lost independently at least two times within trachyline evolution. Narcomedusae is supported as a monophyletic group likely also arising from trachymedusan ancestors. Finally, some data, albeit limited, suggest that some trachyline species names refer to cryptic species that have yet to be sorted taxonomicall

    Phylogenetics of Trachylina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematical taxa

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1017/S0025315408001732.Some of the most interesting and enigmatic cnidarians are classified within the hydrozoan subclass Trachylina. Despite being relatively depauperate in species richness, the clade contains four taxa typically accorded ordinal status: Actinulida, Limnomedusae, Narcomedusae and Trachymedusae. We bring molecular data (mitochondrial 16S and nuclear small and large subunit ribosomal genes) to bear on the question of phylogenetic relationships within Trachylina. Surprisingly, we find that a diminutive polyp form, Microhydrula limopsicola (classified within Limnomedusae) is actually a previously unknown life stage of a species of Stauromedusae. Our data confirm that the interstitial form Halammohydra sp. (Actinulida) is derived from holopelagic direct developing ancestors, likely within the trachymedusan family Rhopalonematidae. Trachymedusae is shown to be diphyletic, suggesting that the polyp stage has been lost independently at least two times within trachyline evolution. Narcomedusae is supported as a monophyletic group likely also arising from trachymedusan ancestors. Finally, some data, albeit limited, suggest that some trachyline species names refer to cryptic species that have yet to be sorted taxonomically

    The Alkaloid Ageladine A, Originally Isolated from Marine Sponges, Used for pH-Sensitive Imaging of Transparent Marine Animals

    Get PDF
    The brominated pyrrole-imidazole Ageladine A was used for live imaging of the jellyfish (jellies) Nausithoe werneri, the sea anemone Metridium senile and the flatworm Macrostomum lignano. The fluorescence properties of Ageladine A allow for estimation of pH values in tissue and organs in living animals. The results showed that Nausithoe werneri had the most acidic areas in the tentacles and close to the mouth (pH 4–6.5), Metridium senile harbours aggregates of high acidity in the tentacles (pH 5) and in Macrostomum lignano, the rhabdoids, the gonads and areas close to the mouth were the most acidic with values down to pH 5

    Material modeling of cellulose aerogels

    No full text
    Aerogels are a unique class of highly porous materials that have been widely studied due to their distinctive properties such as low thermal conductivity, low bulk densities, and large specific surface areas [1, 2]. Recent aerogel research puts a growing focus on the exploration of bio-polymer aerogels. Cellulose aerogels present an environmentally sustainable alternative to their inorganic counterparts owing to their biodegradability, renewable nature, and the broad availability of raw materials for their production [3, 4]. The outstanding material properties of cellulose aerogels are commonly attributed to their porous fibrillar structure. The gelation step in the synthesis process is critical to the formation of the fibrillar gel structure. The central objective of this work is to enable comprehension of the network formation mechanisms in cellulose aerogels throughout the synthesis process. Although current material models for biopolymer aerogels provide precise predictions of structure-property relations, they typically do not account for the gelation and its subsequent impact on the material properties. [5, 6, 7] The developed gelation model based on the discrete element method consists of an ensemble of a structural, polymer bond, diffusion and interaction model. The structural model abstracts the structure of the cellulose molecules through spherical approximation of their glucose repeating units connected with flexible bonds. The polymer bond model describes the local stiffness and curvature of the cellulose polymer chains. A Langevin dynamics based diffusion model and an interaction model defined by a Lennard-Jones potential capture the diffusion forces and intermolecular forces acting upon the cellulose molecules during gelation. A parameter sensitivity analysis studies the influence of the interaction model on the computational gelation kinetics and the microstructure of the cellulose network properties. Experimental data is utilized as model input and for validation of the developed model with respect to the structural properties. In contrary to approaches, which regenerate a virtual twin of the aerogel materials based on experimental structural data, the gelation model developed in the scope of this work generates the desired virtual fibrillar network by simulating the cellulose aggregation process at a molecular level. This work represents a significant step forward in the property prediction of bio-polymer aerogels and sets the stage for improved optimization of their synthesis based on an established theoretical knowledge base
    • …
    corecore