8 research outputs found

    The MMS22L-TONSL Complex Mediates Recovery from Replication Stress and Homologous Recombination

    Get PDF
    Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here we report the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that participates in the recovery from replication stress. MMS22L and TONSL are homologous to yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks, and its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Moreover, cells depleted of MMS22L are highly sensitive to camptothecin, a topoisomerase I poison that impairs DNA replication progression. Finally, MMS22L and TONSL are necessary for the efficient formation of RAD51 foci after DNA damage, and their depletion impairs homologous recombination. These results indicate that MMS22L and TONSL are genome caretakers that stimulate the recombination-dependent repair of stalled or collapsed replication forks

    miRNA‐106a and prostate cancer radioresistance: a novel role for LITAF in ATM regulation

    Get PDF
    Recurrence of high‐grade prostate cancer after radiotherapy is a significant clinical problem, resulting in increased morbidity and reduced patient survival. The molecular mechanisms of radiation resistance are being elucidated through the study of microRNA (miR) that negatively regulate gene expression. We performed bioinformatics analyses of The Cancer Genome Atlas (TCGA) dataset to evaluate the association between miR‐106a and its putative target lipopolysaccharide‐induced TNF‐α factor (LITAF) in prostate cancer. We characterized the function of miR‐106a through in vitro and in vivo experiments and employed transcriptomic analysis, western blotting, and 3â€ČUTR luciferase assays to establish LITAF as a bona fide target of miR‐106a. Using our well‐characterized radiation‐resistant cell lines, we identified that miR‐106a was overexpressed in radiation‐resistant cells compared to parental cells. In the TCGA, miR‐106a was significantly elevated in high‐grade human prostate tumors relative to intermediate‐ and low‐grade specimens. An inverse correlation was seen with its target, LITAF. Furthermore, high miR‐106a and low LITAF expression predict for biochemical recurrence at 5 years after radical prostatectomy. miR‐106a overexpression conferred radioresistance by increasing proliferation and reducing senescence, and this was phenocopied by knockdown of LITAF. For the first time, we describe a role for miRNA in upregulating ATM expression. LITAF, not previously attributed to radiation response, mediates this interaction. This route of cancer radioresistance can be overcome using the specific ATM kinase inhibitor, KU‐55933. Our research provides the first report of miR‐106a and LITAF in prostate cancer radiation resistance and high‐grade disease, and presents a viable therapeutic strategy that may ultimately improve patient outcomes

    The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage

    Get PDF
    SummaryThe biological response to DNA double-strand breaks acts to preserve genome integrity. Individuals bearing inactivating mutations in components of this response exhibit clinical symptoms that include cellular radiosensitivity, immunodeficiency, and cancer predisposition. The archetype for such disorders is Ataxia-Telangiectasia caused by biallelic mutation in ATM, a central component of the DNA damage response. Here, we report that the ubiquitin ligase RNF168 is mutated in the RIDDLE syndrome, a recently discovered immunodeficiency and radiosensitivity disorder. We show that RNF168 is recruited to sites of DNA damage by binding to ubiquitylated histone H2A. RNF168 acts with UBC13 to amplify the RNF8-dependent histone ubiquitylation by targeting H2A-type histones and by promoting the formation of lysine 63-linked ubiquitin conjugates. These RNF168-dependent chromatin modifications orchestrate the accumulation of 53BP1 and BRCA1 to DNA lesions, and their loss is the likely cause of the cellular and developmental phenotypes associated with RIDDLE syndrome
    corecore