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The MMS22L-TONSL complex mediates recovery from
replication stress and homologous recombination
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Summary
Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here, we report
the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that
participates in the recovery from replication stress. MMS22L and TONSL are homologous to
yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at regions
of ssDNA associated with distressed replication forks or at processed DNA breaks, and its
depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to
complete DNA synthesis after replication fork collapse. Moreover, cells depleted of MMS22L are
highly sensitive to camptothecin, a topoisomerase I poison that impairs DNA replication
progression. Finally, MMS22L and TONSL are necessary for the efficient formation of RAD51
foci after DNA damage and their depletion impairs homologous recombination. These results
indicate that MMS22L and TONSL are genome caretakers that stimulate the recombination-
dependent repair of stalled or collapsed replication forks.
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INTRODUCTION
The DNA replication fork and its associated factors, referred to as the replisome, must
overcome DNA lesions and structures that impede fork progression to complete DNA
replication (Labib and Hodgson, 2007). Failure to appropriately manage these obstacles
results in replisome stalling or demise, which can be associated with the formation of DNA
double-strand breaks (DSBs), DNA lesions that are potent inducers of genome
rearrangements (Budzowska and Kanaar, 2009). Cells therefore commit considerable effort
into the management of replication fork progression as a sine qua non for genome integrity.

Many activities help the replisome navigate through the obstacles it encounters during DNA
replication. One of the best studied is ATR-dependent signaling, which stabilizes stalled
replisomes in a state that is competent for the resumption of DNA replication (Casper et al.,
2002; Lopes et al., 2001; Tercero and Diffley, 2001). The ATR kinase is recruited to
distressed forks via the recognition of single-stranded (ss)DNA bound to the heterotrimeric
replication protein A (RPA) complex. Its importance for the maintenance of genome
integrity is illustrated by the observation that deletion of the genes encoding components of
the ATR signaling cascade in mice invariably results in lethality associated with
chromosome breakage (Cimprich and Cortez, 2008).

RPA-bound ssDNA produced at distressed replication forks represents an important
platform for the mobilization of other fork-management activities. For example, TIPIN or
the recently described HARP annealing helicase are both able to recognize the RPA32
subunit of RPA to directly promote fork progression (Driscoll and Cimprich, 2009; Unsal-
Kacmaz et al., 2007). Another critical fork-management system controlled by RPA
associated with ssDNA is homologous recombination (HR), which plays an important role
in the repair of replication forks or the repair of daughter strand gaps by post-replicative
repair (Budzowska and Kanaar, 2009; Wyman and Kanaar, 2006). The contribution of HR
in the promotion of DNA replication is perhaps best illustrated by the observation that sister
chromatid exchanges (SCEs) are stimulated by agents that induce replication stress (Ribas et
al., 1996). Furthermore, disruption of many HR-coding genes, such as RAD51, BRCA2 and
XRCC2, causes embryonic lethality in mice, consistent with a key role in DNA replication
(Budzowska and Kanaar, 2009).

To uncover modulators of genome integrity, we interrogated an RNA interference (RNAi)
screen dataset and identified MMS22L (C6ORF167) as a factor required to prevent
abnormally high levels of spontaneous DSBs. MMS22L is related to the yeast Mms22
protein, but unlike its budding yeast counterpart it does not interact with a cullin-based
ubiquitin ligase (Mimura et al., 2010; Zaidi et al., 2008). Rather, MMS22L forms a complex
with TONSL (also known as NFKBIL2), a previously unrecognized homolog of the plant
DNA repair protein Tonsoku/Brushy1/Mgoun3. MMS22L-TONSL physically interacts with
components of the replication fork and is recruited to RPA-bound ssDNA to promote the
loading of RAD51 during HR. Depletion of MMS22L or TONSL results in a marked
hypersensitivity to the topoisomerase I poison camptothecin (CPT), which is most likely
caused by an inability to promote RAD51-mediated repair of broken replication forks. Our
results suggest that MMS22L-TONSL is a recombination mediator important for the
promotion of genome integrity in S-phase.

O’Donnell et al. Page 2

Mol Cell. Author manuscript; available in PMC 2011 May 1.

PM
C

 C
anada Author M

anuscript
PM

C
 C

anada Author M
anuscript

PM
C

 C
anada Author M

anuscript



RESULTS
MMS22L prevents the accumulation of replication-associated DSBs

We carried out an RNAi screen that led to the identification of RNF8 and RNF168 (Kolas et
al., 2007; Stewart et al., 2009). The screen was based on the quantitation of 53BP1
accumulation in subnuclear foci following gene knockdown with SMARTpool short
interfering (si) RNAs. While we focused initially on genes involved in the focal
accumulation of 53BP1 at sites of DNA damage, the screen also identified siRNAs that
resulted in increased 53BP1 foci. Since our screen assessed 53BP1 foci 24 h after irradiation
(Kolas et al., 2007), the siRNAs leading to elevated numbers of 53BP1 foci could either
target a DSB repair gene or a gene that prevents the formation of accidental DNA breaks
during the cell cycle. In this study, we sought to mine the screen to uncover genes that affect
either of these processes. The primary data from the screen can be found in File S1.

As a first validation step, we tested whether a single siRNA duplex, purchased from a
supplier (Qiagen) other than the library supplier (Dharmacon), could be used to confirm
screen hits. This secondary assay validated 30 hits, including proteins whose depletion was
known to increase levels of DSBs, such as the ribonucleotide reductase subunits RRM1 and
RRM2, EMI1 (FBXO5), FLASH (CASP8AP2) and REV3L (Table S1) (Machida and Dutta,
2007;Paulsen et al., 2009;Van Sloun et al., 2002) or those known to participate in DNA
repair, such as CtIP (RBBP8). A more comprehensive validation of the hits is still ongoing
and will be published elsewhere. Nevertheless, a number of uncharacterized genes were also
present in this hit list. In particular, we were drawn to C6ORF167 since it had been found to
interact with the histone chaperone ASF1 in an interaction proteomics study (Ewing et al.,
2007). BLAST searches with C6ORF167 revealed homology to Mms22, an important but
poorly characterized regulator of genome integrity in fungi (Figure S1) (Bennett et al.,
2001;Dovey and Russell, 2007;Duro et al., 2008;Yokoyama et al., 2007). This sequence
relationship was particularly intriguing since Mms22 has long been considered an orphan
genome integrity protein without homologs in mammals and was therefore chosen for
further characterization.

To reflect the sequence relationship between Mms22 and C6ORF167, we now refer to
C6ORF167 as MMS22-Like (MMS22L). We first generated an antibody that recognizes
MMS22L by immunoblotting (Figure 1A) and next tested whether MMS22L depletion
caused spontaneous DSBs in the absence of exogenous DNA damage. We examined
MMS22L knockdown with 7 siRNA duplexes (3 siGENOME and 4 ON-TARGETplus
siRNAs) and found that 5/7 increased 53BP1 foci without the application of any other form
of DNA damaging agent (Figure 1BC). Moreover, we found that the extent of 53BP1 foci
correlated closely with the extent of protein knockdown (Figure S2A) strongly indicating
that MMS22L depletion results in the accumulation of endogenous DSBs.

Since endogenous DSBs are often the consequence of aberrant DNA replication, we tested
whether the inhibition of origin firing with a CDC7 kinase inhibitor, PHA767491
(Montagnoli et al., 2008) could mitigate the increase in 53BP1 foci observed upon MMS22L
depletion. As a positive control, we also examined the effect of PHA767491 on CHK1
(CHEK1) knockdown, which is known to result in replication-associated DSBs (Syljuasen et
al., 2005). As shown in Figures 1D and S2B, we observed that PHA767491 treatment
reduced the number of 53BP1 foci-positive cells following MMS22L depletion, and to a
similar extent following CHK1 knockdown. This result suggested that the DSBs observed in
MMS22L-depleted cells are the consequence of an impaired DNA replication-associated
process. Consistent with the accumulation of DNA lesions, MMS22L-depleted cells showed
robust accumulation in the G2 phase of the cell cycle, with concomitant phosphorylation of
CHK1 on S317, indicative of checkpoint activation (Figure 1E-G). This was also observed
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using at least two independent siRNAs (Figure S2CD). From these observations, we
conclude that MMS22L promotes genome integrity in S-phase.

MMS22L forms a complex with TONSL/NFKBIL2
To gain insight into the molecular mechanism by which MMS22L prevents DNA breaks
during DNA replication, we sought MMS22L-interacting proteins. This effort was also
motivated by the observation that fungal Mms22 interacts with Mms1, a DDB1-related
protein, and with Rtt101, a CUL4-like cullin (Dovey et al., 2009; Mimura et al., 2010; Zaidi
et al., 2008). We engineered a HEK293 cell line that stably expressed MMS22L tagged at
the C-terminus with myc and Flag epitopes (MMS22L-mFlag) in order to immunopurify
MMS22L complexes for mass spectrometric analysis. Peptides derived from the MCM
(MCM2, 4, 6, 7) and FACT (SUPT16H and SSRP1) complexes were found in the MMS22L
immunoprecipitates (Figure 2A and Table S2). In addition, we also identified a large number
of peptides derived from NFKBIL2 (or IKBR), a protein previously thought to be similar to
IκB (Figure 2A and Table S2) (Ray et al., 1995). Strikingly, we did not observe any peptides
derived from cullins or DDB1, suggesting that MMS22L forms a complex that has a
different architecture than its yeast relative.

Examination of the NFKBIL2 sequence revealed the presence of 3 ankyrin (ANK) repeats
that are similar to those found in BARD1, but also 8 tetratricopeptide (TPR), 7 leucine rich
(LRR) repeats and a ubiquitin-like domain (UBL) that are not found in IκB (Figure 2B).
Strikingly, this domain organization revealed that NFKBIL2 is homologous to a protein
found in plants called Tonsoku (Suzuki et al., 2004), Bru1 (Takeda et al., 2004) or Mgoun3
(Guyomarc’h et al., 2004) (Figure S3). This observation was of particular importance given
that Tonsoku mutants are hypersensitive to a variety of genotoxins (Takeda et al., 2004) and
show hallmarks of constitutive DNA damage (Suzuki et al., 2005; Takeda et al., 2004). To
reflect the observation that NFKBIL2 is a sequence relative of Tonsoku rather than IκB, we
refer to it hereafter as TONSL (Tonsoku-like).

We next raised an antibody that recognizes endogenous TONSL by immunoblotting (Figure
2C) and used it in co-immunoprecipitation studies. We observed that MMS22L and TONSL
efficiently immunoprecipitated one another (Figure 2D), suggesting that MMS22L and
TONSL form a complex in vivo.

MMS22L-TONSL interacts with the MCM complex
An N-terminally tagged Flag-TONSL protein, expressed inducibly in HEK293 cells, was
subjected to immunopurification followed by mass spectrometric analysis. As expected, we
recovered many peptides derived from MMS22L (Figure 2E and Table S2). Also, as
observed with MMS22L complexes, we identified peptides derived from the MCM (MCM2,
4, 6, 7) and FACT complexes. Moreover, peptides originating from RPA (RPA1 and RPA3),
histone H2A, H2B, as well as the histone chaperone ASF1b were detected.

Co-immunoprecipitation experiments with Flag-TONSL validated the interaction with
components of the MCM complex (either MCM2 or multiple MCM proteins using a pan-
MCM antibody) and a weaker interaction with ASF1b, which is itself a MCM-interacting
protein, (Groth et al., 2007) but not with FACT complex components (Figure 2F and data
not shown). Intriguingly, we have so far been unable to detect the TONSL-MCM interaction
with a TONSL antibody. As expected, we were able to detect a strong interaction between
Flag-tagged MMS22L and GFP-tagged TONSL in reciprocal co-immunoprecipitation
experiments (Figures 2F and S4A), further confirming that MMS22L and TONSL form a
complex. Interestingly, MCMs and MMS22L interact with two different sites on TONSL.
As shown in Figure S4B-D, deletion mapping experiments indicate that the integrity of the
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C-terminal LRR repeats is necessary for interaction with MMS22L whereas the N-terminal
TPR repeats are essential for the interaction with the MCM complex, with a contribution of
the ANK repeats.

Consistent with TONSL being part of a functional complex with MMS22L, we observed
that depletion of TONSL by multiple siRNAs in RPE1-hTERT cells resulted in an
accumulation of cells in G2/M phase (Figure 3A and S5AB). Furthermore, the G2/M
accumulation phenotype was also observed in U2OS cells (Figure S5C) and, importantly,
could be totally rescued by reintroduction of a siRNA-resistant TONSL cDNA (Figure
S5CD) ruling out the possibility that the phenotype was due to an off-target effect. Depletion
of TONSL in HeLa cells resulted in an increase in 53BP1 foci but the extent of this increase
was less than that observed following MMS22L knockdown (Figure 3BC). Interestingly,
TONSL knockdown in HeLa cells resulted in a decrease in MMS22L protein levels (Figure
S5A). MMS22L knockdown in HeLa cells also impacted TONSL protein levels (Figure
S2D) but the strength of this interdependency was variable depending on the length of the
knockdown or the cell type used (e.g. see Figure S5E). Together, these results suggest that
MMS22L and TONSL may be part of an obligatory complex, and that TONSL links the
complex to the MCM helicase.

The MMS22L-TONSL complex promotes survival following replication fork collapse
The replication-dependent DSBs caused by depletion of MMS22L and the interaction with
the MCM helicase suggest a role for the MMS22L-TONSL complex during DNA
replication. Therefore, we tested whether depletion of MMS22L by siRNA renders cells
hypersensitive to ionizing radiation (IR) or topoisomerase I inhibition by camptothecin
(CPT). We observed a striking hypersensitivity of MMS22L-depleted cells to CPT, but not
to IR (Figure 3D). Since CPT results in replication stress that is often associated with fork
collapse and attendant DSBs (Pommier, 2006), these results suggested that the MMS22L-
TONSL complex is particularly important for dealing with replication fork stalling or
collapse. The hypersensitivity to CPT can be partly explained by the observation that
MMS22L-depleted cells have a marked delay in completing the cell cycle after release from
CPT treatment (Figure 3E). Interestingly, MMS22L-depleted cells initiated DNA synthesis
after CPT removal yet clearly experienced difficulties in completing DNA replication since
the delay in cell cycle progression was associated with CHK1 activation (Figure 3F). These
data indicate that MMS22L promotes recovery from DNA replication stress.

Next, we monitored replication dynamics at the single-molecule level using dynamic
molecular combing, in which stretched DNA fibers are deposited on glass slides and
analyzed by immunofluorescence detection of incorporated nucleotide analogs such as CldU
or IdU (Herrick and Bensimon, 2009). First, we examined whether MMS22L was important
for unchallenged DNA synthesis in U2OS cells. Replicons undergoing DNA synthesis were
labelled for 30 min with CldU and then for 45 min with IdU (Figure 4A). We then
specifically analyzed IdU tracts that emanated from a CldU tract, since this labelling
strategy enriched for forks that were active at the beginning of the labelling experiment. This
scheme did not reveal any difference in the IdU tract lengths or fork velocities between the
control and MMS22L-depleted cells (Figure 4A-C) indicating that MMS22L is not required
for bulk DNA replication fork progression.

Next, we examined replication fork dynamics in response to CPT, since MMS22L-depleted
cells are particularly sensitive to topoisomerase I inhibition. DNA replication is rapidly
slowed in the presence of CPT and new origin firing is inhibited via a CHK1-dependent
process (Seiler et al., 2007). Using the experimental scheme depicted in Figure 4D, we
found that MMS22L-depleted cells are particularly defective in resuming normal DNA
replication after removal of CPT (Figure 4DE). These differences in IdU tract length
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distributions were highly significant (p<0.0001, Mann-Whitney test). Therefore, MMS22L
is important for DNA replication fork progression in the presence of DNA lesions. This
molecular defect associated with the loss of MMS22L could account for the hypersensitivity
to CPT, the accumulation of cells in G2/M and the spontaneous DNA breaks seen in
MMS22L-depleted cells.

MMS22L-TONSL accumulates at DNA damage sites
The phenotypes associated with MMS22L and TONSL depletion suggest that the complex
might play a direct role at DNA lesions. To test this possibility, we first examined whether
MMS22L and TONSL accumulate at sites of laser microirradiation. We observed a near-
perfect accumulation of MMS22L (either epitope-tagged or endogenous protein) and
TONSL at sites of DNA damage marked by either RPA (Figure 5AB) or γ-H2AX (Figure
S6A-C), the former marker identifies sites of replication-associated DSBs whereas the latter
is indicative of ssDNA caused by the processing of collapsed replication forks or by ssDNA
gaps. The specificity of the respective stainings was confirmed following siRNA-mediated
depletion (Figures 5C and S6). Interestingly, while the MMS22L/TONSL stripes overlapped
perfectly with those formed by RPA32, they were contained within the γ-H2AX-marked
domain (Figure S6A-C). This type of staining pattern has been noted before (Bekker-Jensen
et al., 2006) and suggests that MMS22L and TONSL colocalize with ssDNA formed
following DSB processing.

To test this possibility further, we quantitated the percentage of cells with γ-H2AX stripes
that contained either MMS22L or TONSL stripes following depletion of CtIP, a protein that
plays a key role in DNA end resection (Sartori et al., 2007). We found that transfection of
cells with a CtIP siRNA profoundly reduced MMS22L-mFlag and TONSL accumulation at
sites of microirradiation, almost as much as TONSL or MMS22L depletion (Figure 5C). We
conclude from these observations that TONSL and MMS22L can accumulate at DNA
breaks, downstream of DNA end-resection.

We next examined whether TONSL and MMS22L accumulate in subnuclear foci in
response to various DNA damaging agents. We observed a robust accumulation of
MMS22L-mFlag or endogenous TONSL in foci with CPT treatment, resulting in the clearest
and most striking accumulation (Figures 5D, 6A and S7A). Not surprisingly, TONSL foci
overlapped with MMS22L-mFlag foci (Figure S6D), consistent with the two proteins
forming a complex. The staining for each protein was specific since it was abolished by their
respective siRNAs (Figure 5D). Interestingly, we also noted that knockdown of MMS22L
abolished the formation of TONSL foci and vice versa, an observation also seen with laser
microirradiation (Figure 5CD). Interestingly, in this particular experiment, depletion of
MMS22L greatly impaired TONSL focus formation in response to CPT without affecting
TONSL steady-state levels, while TONSL depletion affected MMS22L steady-state levels
(Figure S5E). These results indicate that MMS22L is either a recruitment factor for TONSL
at sites of DNA damage or that the integrity of the complex is necessary for accumulation at
distressed replication forks.

We then examined colocalization of MMS22L-TONSL with γ-H2AX and RPA32 after CPT
treatment. We observed a strong overlap between MMS22L-TONSL and RPA32 foci
(Figure 5E) but observed at best a partial co-localization with γ-H2AX (Figure S6E).
Importantly, upon depletion of the CtIP protein, we observed a reduction in both RPA32 and
TONSL foci (Figure S6FG). These results support the data obtained with laser
microirradiation and suggest a model where RPA-bound ssDNA acts as a signal for the
recruitment of MMS22-TONSL to sites of DNA damage.
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MMS22L-TONSL promotes homologous recombination
DNA replication forks that expose ssDNA can be the substrates of the HR apparatus, which
acts to restore active DNA replication. The co-localization of the MMS22L-TONSL
complex with RPA-coated ssDNA suggests that MMS22L and TONSL might be involved in
the HR-dependent repair of stalled or broken replication forks. In support of this possibility,
we observed that MMS22L and TONSL accumulated in foci in response to CPT,
hydroxyurea (HU), methylmethane sulfonate (MMS) and ultraviolet (UV) light (Figures 6A
and S7A), which can all produce DNA replication stress and replication-associated ssDNA
accumulation.

The first step in HR is the formation of the RAD51 nucleofilament on ssDNA. The
formation of RAD51 foci can be used as a surrogate for the assembly of RAD51 filaments,
although not all filaments result in RAD51 foci (Raderschall et al., 1999). We examined
whether depletion of MMS22L or TONSL affected RAD51 focus formation in response to
CPT or IR and found that in the absence of either protein, RAD51 focus formation was
severely curtailed (Figure 6BC). We did not observe a decrease in end-resection following
MMS22L-TONSL depletion, as measured by RPA32 focus formation (Figures 6D and
S7B); in fact, we observed that MMS22L- and TONSL-depleted cells RPA32 foci persisted
following the removal of CPT, supporting the possibility that MMSS2L-TONSL promotes
RAD51 nucleofilament formation downstream of ssDNA generation (Figures 6D and S7B).
Moreover, at the 72 h time point, we observed a large increase in the mean number of foci in
the MMS22L- and TONSL-depleted cells, with an average of 93.4 and 24.7 RPA32 foci
respectively, compared to an average of 3.8 foci in the control-transfected cells (Figure S7B
and data not shown).

BRCA2 is a major recombination mediator in eukaryotes that plays a key role in promoting
RAD51 focus formation after DNA damage (Yuan et al., 1999). BRCA2 also localizes at
sites of DNA lesions (Chen et al., 1998). We therefore asked whether MMS22L-TONSL
promotes RAD51 loading by enabling BRCA2 to localize to DNA damage sites. Strikingly,
we observed that BRCA2 focus formation was unaffected following MMSS22L or TONSL
depletion (Figure 6EF), suggesting that MMS22L-TONSL does not act through BRCA2 to
promote RAD51 loading on chromatin.

Next, we examined whether the MMS22L-TONSL complex promotes HR by examining
gene conversion stimulated by the I-SceI meganuclease using a DR-GFP reporter integrated
in a HeLa cell line (Pierce et al., 2001). As expected, RAD51 siRNA transfection severely
attenuated the formation of GFP-positive cells when compared to control siRNA-transfected
cells (96% reduction; Figure 7A). Depletion of MMS22L and TONSL by multiple siRNAs
in the HeLa DR-GFP cell line decreased gene conversion by an average of 60% (Figure 7A).

Sister chromatid exchanges (SCEs) are a type of recombination event that are associated
with replication stress. Bloom syndrome cells are characterized by a very high level of SCEs
(Chaganti et al., 1974). As a complement to the DR-GFP assay, we examined whether
MMS22L depletion affected the high levels of SCEs observed in Bloom syndrome cells
using the BLM-deficient (BLM−−) cell line PSG13 and an isogenic cell line, PSNF5, which
is complemented with the wild type BLM gene (BLM+) (Gaymes et al., 2002). We found
that MMS22L depletion resulted in a decrease in SCE frequency in both cells lines, with a
marked decrease in the BLM−/−line (Figure 7B, p <0.0001 by a Mann-Whitney test). From
this result, we conclude that MMS22L is also important for HR that occurs as a consequence
of replication fork stalling or collapse.

The above results hinted that MMS22L-TONSL might be important for cell proliferation or
viability in the absence of BLM. To test this possibility, we implemented a multicolour
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assay in which the BLM−/− and BLM+ cell lines were first stably transduced with lentiviral
vectors expressing fluorescent protein reporters (GFP or RFP). Cells from each genotype
were mixed at a 1:1 ratio before plating, and then transfected with control, MMS22L or
TONSL siRNAs. 96 h post- transfection, the cell ratio was determined by high-content
fluorescence microscopy. As shown in Figure 7C, we observed a selective loss of the BLM-
deficient cells following TONSL or MMS22L knockdown. Importantly, we obtained the
same result when the fluorescent reporters were swapped (Figure 7C). Furthermore, an
identical result was obtained when cells were manually counted following MMS22L
knockdown (data not shown). These results indicate that the loss of both BLM and
MMS22L results in a synthetic genetic interaction, consistent with a role for MMS22L in the
resumption of DNA replication after fork stalling or collapse. Interestingly, we also found
that deletions of the budding yeast MMS22L and BLM homologs, MMS22 and SGS1,
displayed synthetic sensitivity to DNA damaging agents (Figure S7C), perhaps pointing to
an evolutionary conservation of this genetic interaction.

Finally, we sought to map the domains important for TONSL function. We engineered a
U2OS cell line to express various siRNA-resistant TONSL deletion mutants under the
control of a tetracycline-inducible promoter and examined RAD51 focus formation as a
readout of TONSL function. We expressed untagged TONSL proteins as we found that
epitope tagging affected TONSL function. The uninduced TONSL wild type cell line had
reduced RAD51 focus formation after IR, as expected, when compared to cells where
TONSL expression was induced (Figure 7D). Interestingly, we found that while the ANK
repeats were dispensable for RAD51 focus formation, the LRR and (to a lesser degree) the
TPR repeats were important for promoting them (Figure 7D). These data indicate that the
interaction between MMS22L and TONSL is critical for the formation of the RAD51
nucleofilament and suggest that the interaction with the MCM helicase also contributes to
this function of the MMS22L-TONSL complex.

DISCUSSION
This study uncovers a role for the MMS22L-TONSL complex as a regulator of genome
integrity in human cells. We have found that MMS22L-TONSL is recruited to regions of
ssDNA generated either by end processing or by replication fork stalling or collapse. At
those sites the complex promotes the recombination-dependent repair of DNA lesions by
stimulating the loading of RAD51 at sites of DNA damage. As expected of a complex
promoting RAD51 polymerization on ssDNA, depletion of MMS22L-TONSL impairs gene
conversion. However, perhaps surprisingly, BRCA2 localization to DNA lesions was
unaffected following MMS22L-TONSL knockdown. Together, this data suggests that the
function of MMS22L-TONSL may be to enable RAD51 loading in the context of chromatin.
Indeed, the putative orthologs of MMS22L and TONSL, yeast Mms22 and plant Tonsoku,
have both been linked to chromatin modification pathways (Collins et al., 2007; Takeda et
al., 2004). Another possibility is that MMS22L-TONSL antagonizes activities that inhibit
RAD51 loading on DNA. Whatever the exact mechanism by which MMS22L-TONSL
promotes HR, the strong association between HR and malignancies (Helleday, 2010)
suggest that genetic alterations of the MMS22L and TONSL genes might be associated with
cancer.

Intriguingly, MMS22L-TONSL promotes RAD51 focus formation in response to IR and
CPT, yet MMS22L-TONSL-depleted cells are selectively sensitive to CPT. While one
possibility for this apparent selective hypersensitivity to DNA replication stress might be
that MMS22L-TONSL promotes fork restart via HR, another and not mutually exclusive
function for the complex might be to promote strand-exchange reactions at daughter strand
gaps behind the replication fork (Lehmann and Fuchs, 2006; Nagaraju and Scully, 2007).
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Indeed, MMS22L-TONSL might be especially important for HR in the absence of DNA
ends.

On this last point, we speculate that MMS22L-TONSL might represent a complex analogous
to the prokaryotic RecF, RecO and RecR (RecFOR) complex. These proteins mediate
assembly of RecA (prokaryotic RAD51) filaments on ssDNA to reactivate replisomes or to
promote HR behind replication forks (Courcelle et al., 2003; Michel et al., 2007; Morimatsu
and Kowalczykowski, 2003). RecFOR is particularly important for replication fork restart in
the absence of PriA (Grompone et al., 2004). The analogy between MMS22L-TONSL and
RecFOR is particularly intriguing since MMS22L-TONSL localizes almost perfectly with
RPA (and by association ssDNA). We note that despite the assumption that replisomes
always run off after encountering a CPT-induced lesion, this might not always be the case
and thus a significant fraction of replisomes could stall instead of collapsing. A similar
situation has been proposed when the bacterial replisome approaches UV lesions or when
converging forks reach an interstrand crosslink (Knipscheer et al., 2009; Michel et al.,
2007). In the case of UV lesions, bacterial RecFOR employs a RecA-dependent mechanism
to provide time for DNA repair and resumption of replication. A similar mechanism would
be advantageous in eukaryotes given the absence of a PriA-like replication restart system.
We suggest that a RecFOR-like mechanism of replisome re-activation is a particularly
attractive function for the MMS22L-TONSL complex.

EXPERIMENTAL PROCEDURES
Cell culture and transfection

All culture media were supplemented with 10% fetal bovine serum (FBS), 100 U/ml
penicillin and 100 μg/ml streptomycin. U2OS cells were cultured in McCoy’s medium,
HeLa, HEK293 and 293T cells were cultured in DMEM, RPE-1 hTERT cells were cultured
in DMEM/F12 (1:1). Transfections to generate stable cell lines were carried out using
Effectene Transfection Reagent (Qiagen) following the manufacturer’s protocol. Transient
transfections were performed using either Effectene or PEI (Polyethylenimine;
Polysciences). All inducible TONSL expression cell lines were generated using the Flp-In
TREx system (Invitrogen) as described (Stewart et al., 2009).

Drug treatments
The CDC7 kinase inhibitor PHA767491 was purchased from Tocris Bioscience (Ellisville
MO). MMS, HU and CPT were purchased from Sigma-Aldrich (St Louis MO).

RNA interference
siRNAs employed in this study were either siGENOME SMARTpools or On-Target Plus
deconvolved siRNAs from ThermoFisher or were purchased from Qiagen. RNAi
transfections were performed using Dharmafect 1 (ThermoFisher) in a forward transfection
mode.

Homologous recombination assay
Homologous recombination capacity was assayed essentially as described (Pierce et al.,
2001). HeLa cells carrying the DR-GFP reporter were transfected with various siRNAs. 48 h
later the cells were either transfected with the I-SceI expression plasmid pCBASce or mock
treated and then grown for an additional 48 h prior to analysis. Cells were harvested by
trypsinization, washed twice with PBS, resuspended in 1 ml PBS, passed through a 35 μm
cell strainer and analyzed by FACS. FACS profiles were generated with FlowJo analysis
software (Tree Star Inc., Ashland OR).
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Full details of all other experimental procedures are given in Supplemental Information.

Highlights

• Loss of MMS22L or TONSL results in spontaneous DNA double-strand breaks.

• MMS22L forms an interdependent complex with TONSL.

• MMS22L and TONSL accumulate at lesions containing RPA-bound single-
stranded DNA.

• MMS22L-TONSL promotes RAD51 nucleofilament formation and homologous
recombination.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MMS22L prevents spontaneous DNA damage during S phase
(A) Representative immunoblotting of HeLa cells transfected with either control (siCTRL)
or MMS22L SMARTpool (siMMS22L). Arrow indicates specific MMS22L band. Asterisk
indicates a nonspecific immunoreactive protein that serves as an internal loading control. M,
molecular size standards.
(B) Spontaneous 53BP1 focus formation correlates with efficiency of MMS22L knockdown.
HeLa cells were transfected with either control or MMS22L siRNAs. 48 h post-transfection
cells were fixed and processed for anti-53BP1 immunofluorescence (red) and DAPI staining
(blue). An immunoblot documenting the extent of MMS22L depletion is found in Figure
S2A.
(C) Quantitation of (B). At least 100 cells per condition were counted. Data are represented
as the mean ± SD (n=3).
(D) U2OS cells were transfected either with control, MMS22L or CHK1 siRNAs. 48 h post-
transfection, cells were treated either with DMSO or with 5 μM PHA767491 for 6 h, fixed
and processed for 53BP1 immunofluorescence. Foci-positive cells were defined as cells with
more than 5 53BP1 foci. At least 100 cells per condition were counted. Data are represented
as the mean ± SD (n=3).
(E) FACS profiles of hTERT RPE-1 cells transfected with control or MMS22L siRNAs. The
proportion of cells in G1, S and G2 phases of the cell cycle are indicated. PI, propidium
iodide.
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(F) HeLa cells were transfected with either control or MMS22L siRNAs. 48 h post-
transfection cells were fixed and processed for anti-phospho-histone H3
immunofluorescence to identify mitotic cells. At least 100 cells per condition were counted.
Data are represented as the mean ± SD (n=3).
(G) Depletion of MMS22L results in checkpoint activation. Whole cell extracts of HeLa
cells transfected with either control or MMS22L siRNAs were analyzed by immunoblotting
with antibodies to CHK1 phosphoserine 317 (pS317), total CHK1 (CHK1), MMS22L or
tubulin (loading control).
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Figure 2. MMS22L interacts with TONSL/NFKBIL2
(A) MMS22L interactions detected by IP-MS (Table S2) grouped according to known
biological associations. The strength of interaction is indicated by the boldness of the arrow.
Arrows pointing between the different groups indicate a reported biological interaction.
(B) Domain structure of NFKBIL2/TONSL. TPR, tetratricopeptide repeat; ANK, ankyrin
repeat; UBL, ubiquitin-like domain; LRR, leucine-rich repeat; aa, amino acid.
(C) Representative immunoblotting of TONSL knockdown. U2OS whole cell extracts were
analyzed by immunoblotting with antibodies to TONSL or actin (loading control). Arrow
indicates specific TONSL band. M, molecular size standards.
(D) Endogenous MMS22L and TONSL co-immunopreciptiate (IP) each other. A control
immunoprecipitation with a non-specific rabbit IgG fraction (IgG) was performed in
parallel. Immunoprecipitated proteins were subjected to immunoblot analysis with the
indicated antibodies.
(E) TONSL interaction network (Table S2) as described in (A).
(F) Whole cell lysates (WCE) of 293T cells transiently expressing GFP-TONSL and/or
MMS22L-mFlag were subjected to immunoprecipitation with anti-GFP antibodies followed
by immunoblot analysis with the indicated antibodies. Arrows and numbers at the right
indicate the migration of different MCM proteins. M, molecular size standards.
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Figure 3. MMS22L and TONSL are required for recovery from replication stress
(A) FACS profiles of RPE-1 hTERT cells 48 h post-transfection with control (siCTRL) or
TONSL (siTONSL) siRNAs.
(B) TONSL depletion in HeLa cells results in spontaneous 53BP1 foci. 48 h post-
transfection with the indicated siRNAs, cells were fixed and processed for anti-53BP1
immunofluorescence and DAPI staining. Quantitation of 53BP1 foci are shown for each
siRNA tested in the accompanying histogram. At least 100 cells per condition were counted.
Data are represented as the mean ± SD (n=3).
(C) Immunoblot analysis of transfections shown in (B). Blots of whole cell extracts were
probed with antibodies to TONSL and tubulin (loading control).
(D) Clonogenic survival assays in MMS22L-depleted cells following X-irradiation (IR) or
treatment with camptothecin (CPT). Cells were then permitted to grow for 14 d before
fixation and staining. Colonies with >50 cells were counted. The surviving fraction is
represented as the mean ± SD (n=3).
(E) Cell cycle profiles of HeLa cells recovering from a 30 min incubation with 0.1 μM CPT.
Cells were transfected with control or MMS22L siRNAs 48 h prior to DMSO or CPT
treatment.
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(F) HeLa cells were transfected with control or MMS22L siRNAs. 48 h post-transfection,
cells were treated with DMSO (-) or 0.1 μM CPT for 30 min and then released into fresh
medium for the indicated times. Whole cell extracts were analyzed by immunoblotting with
antibodies to MMS22L, CHK1 phosphoserine 317 (pS317), total CHK1 (CHK1) or actin
(loading control).
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Figure 4. MMS22L promotes DNA replication on damaged templates
(A) Above is a schematic of the fork velocity experiment. Below are representative images
of single DNA fibers of HeLa cells transfected with control (siCTRL) or MMS22L
(siMMS22L) siRNAs. Arrows indicate direction of DNA synthesis. Green, CldU; red, IdU;
blue, DNA. Scale bar: 50 kb.
(B) Box plot representation of IdU tract lengths in cells transfected with control and
MMS22L siRNAs. The number within each box indicates the median of the result. Each box
plot consists of data from three independent experiments and represents a total of 160
measurements. p-values between the indicated samples were calculated using a non-
parametric Mann-Whitney test.
(C) Fork velocities derived from the experiment depicted in A-B. Data are represented as the
mean ± SD.
(D) Above is a schematic of the CPT recovery experiment. Below are representative images
of single DNA fibers from the fork recovery experiment. Arrows indicate direction of DNA
synthesis. Colors are as in (A).
(E) Box plot representation of IdU tract lengths in cells transfected with control and
MMS22L siRNAs. The number within each box indicates the median result. Each box plot
consists of data from 2 independent experiments and represents a total of 200 measurements.
p-values were calculated as in (B).
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Figure 5. MMS22L and TONSL accumulate at sites of DNA damage
(A-B) U2OS cells expressing MMS22L-mFlag (A) or unaltered U2OS cells (B) were
microirradiated with a UVA laser and processed for RPA32 and Flag (MMS22L; A) or
TONSL
(B) immunofluorescence. Dashed lines indicate nuclei as determined by DAPI staining (not
shown). Scale bar: 10 μm.
(C) Quantitation of the percentage of cells with a γ-H2AX stripe that also contained a
MMS22L or TONSL stripe after transfection with the indicated siRNAs. The experiments
were done with U2OS cells stably expressing MMS22L-mFlag (for the Flag staining) or
unaltered U2OS cells for the endogenous (endo) TONSL and MMS22L staining. At least 80
cells per condition were counted. See Figure S6A-C for representative micrographs.
(D) U2OS cells stably expressing MMS22L-mFLag (top) or unaltered U2OS cells (bottom)
were transfected either with control (siCTRL), MMS22L (siMMS22L) or TONSL
(siTONSL) siRNAs. 48 h after transfection, cells were treated with 1 μM CPT for 3 h before
being fixed and processed for myc (MMS22L; top) or TONSL (bottom)
immunofluorescence. Dashed lines indicate nuclei as in (A). Scale bar: 10 μm.
(E) U2OS cells stably expressing MMS22L-mFlag (top) or unaltered U2OS (bottom) were
treated with 1 μM CPT for 3 h before being fixed and processed for RPA32 and Flag
(MMS22L; top) or TONSL (bottom) immunofluorescence. Dashed lines indicate nuclei as
in (A). Scale bar: 10 μm.
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Figure 6. MMS22L and TONSL colocalize at stalled replication forks
(A) U2OS cells were treated with DMSO or the indicated DNA damaging agents (1 μM
CPT for 3 h, 3mM HU for 2 h, 0.02% MMS for 2 h, 50 J/m2 UV-irradiation followed by 2 h
recovery). Cells were then fixed and processed for TONSL and RPA32
immunofluorescence. Dashed lines indicate nuclei as determined by DAPI staining (not
shown). Scale bar: 10 μm.
(B) U2OS cells stably expressing Flag-tagged RAD51 were transfected either with control
(siCTRL), TONSL (siTONSL) or MMS22L (siMMS22L) siRNAs. 48 h after transfection,
cells were treated with 1 μM CPT for 3 h before being fixed and processed for Flag
immunofluorescence. Dashed lines indicate nuclei as in (A). Scale bar: 10 μm.
(C) Quantitation of Flag-RAD51 foci from the experiment described in (A) and from an
identical experiment done with 10 Gy ionizing radiation instead of CPT. Foci-positive cells
were defined as cells with more than 10 Flag-RAD51 foci. At least 100 cells per condition
were counted. Data are represented as the mean ± SD (n=3).
(D) Quantitation of RPA foci in U2OS cells treated with 0.5 μM CPT for 30 min (t=0) and
then released from the treatment and collected at the indicated time points. Representative
images are shown in Figure S7B.
(E) U2OS cells were transfected with control, MMS22L or TONSL siRNAs. 48 h after
transfection, cells were irradiated with 10 Gy and 4 h later were fixed and processed for
BRCA2 and γ-H2AX immunofluorescence. Insets are magnifications of the indicated fields.
Dashed lines indicate nuclei as in (A). Scale bar: 10 μm.
(F) Quantitation of BRCA2 foci from the experiment described in (E). Foci-positive cells
were defined as cells with more than 5 BRCA2 foci. At least 75 cells per condition were
counted. Data are represented as the mean ± SD (n=3).
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Figure 7. The MMS22L-TONSL complex promotes homologous recombination
(A) Effect of MMS22L or TONSL depletion on homologous recombination. HeLa DR-GFP
cells were transfected with the indicated siRNAs, and 48 h later were transfected with or
without an I-SceI expression plasmid. 48 h after transfection, cells were harvested and
assayed for GFP expression by FACS analysis. Data are represented as the mean ± SD
(n=3).
(B) Effect of MMS22L depletion on sister chromatid exchange in BLM deficient cells
(PSNG13; BLM-/-) and isogenic complemented cells expressing BLM cDNA (PSNF5;
BLM+) transfected with control (siCTRL) or MMS22L siRNAs. At least 40 metaphase cells
were counted for each condition. Statistical significance was calculated with a Mann-
Whitney test.
(C) Bloom syndrome cells (BLM−/−) and isogenic complemented cells expressing BLM
cDNA (BLM+) were first transduced with a lentivirus expressing either GFP or RFP. The
resulting fluorescent protein-marked BLM−/− and BLM+ lines were plated at a 1:1 ratio and
were transfected with control, MMS22L, or TONSL siRNAs. 96 h post-transfection cells
were fixed and imaged with a high-content microscope to determine the BLM−/− to BLM+
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ratio. Data was normalized to the control siRNA condition to eliminate proliferation and
transfection differences between cell lines. The data represents the mean +/− SEM (n=2).
(D) The TONSL LRR and TPR repeats are required for RAD51 focus formation. Top:
Schematic representation of the domain architecture and physical interactions of TONSL.
U2OS cell lines containing stable integrations of the indicated TONSL cDNA were
transfected with a TONSL siRNA (#1) and were either left uninduced (−) or were induced
(+) by tetracycline (Tet) addition for 24 h prior to a 10 Gy IR dose. 3h later, the cells were
fixed and processed for RAD51 immunofluorescence. The number of cells with more than 5
RAD51 foci is presented as the percentage deviation from the wild type, induced condition.
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