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SUMMARY

The biological response to DNA double-strand breaks
acts to preserve genome integrity. Individuals bearing
inactivating mutations in components of this response
exhibit clinical symptoms that include cellular radio-
sensitivity, immunodeficiency, and cancer predisposi-
tion. The archetype for such disorders is Ataxia-Telan-
giectasia causedby biallelic mutation inATM, a central
component of the DNA damage response. Here, we
report that the ubiquitin ligase RNF168 is mutated in
the RIDDLEsyndrome,a recentlydiscovered immuno-
deficiency and radiosensitivity disorder. We show that
RNF168 is recruited tosites ofDNA damagebybinding
toubiquitylatedhistoneH2A.RNF168actswithUBC13
to amplify the RNF8-dependent histone ubiquitylation
by targeting H2A-type histones and by promoting the
formation of lysine 63-linked ubiquitin conjugates.
These RNF168-dependent chromatin modifications
orchestrate the accumulation of 53BP1 and BRCA1
to DNA lesions, and their loss is the likely cause of
the cellular and developmental phenotypes associ-
ated with RIDDLE syndrome.

INTRODUCTION

DNA damage, signaling, and repair are fundamental processes

required to maintain cellular viability and homeostasis. Among

the different types of DNA lesions, the DNA double-strand break

(DSB) is considered the most harmful. Indeed, unrepaired DSBs

can be lethal to the cell, and their inaccurate repair leads to chro-

mosomal rearrangements that promote tumorigenesis (Jeggo

and Lobrich, 2007). Defects in DSB repair are also associated

with accelerated aging, exhaustion of stem cell pools, infertility,

and impaired development of the nervous and immune systems

(Callen et al., 2007; McKinnon and Caldecott, 2007). Therefore,
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to counteract these unwanted outcomes, DSBs elicit a complex

response that promotes DNA repair and profoundly influences

multiple aspects of cellular physiology (Jeggo and Lobrich, 2007).

Germline mutations in genes coding for regulators of the DSB

response are responsible for complex diseases that have a wide

range of clinical phenotypes. A paradigm for such syndromes is

Ataxia-Telangiectasia (A-T) caused by biallelic mutations in ATM,

which encodes a serine/threonine kinase of the PI(3) kinase-like

kinases family (Savitsky et al., 1995). Loss of ATM results in

progressive neurodegeneration, immune dysfunction, hypersen-

sitivity to ionizing radiation (IR), and marked predisposition to

cancer (Lavin and Shiloh, 1997). At the cellular level, ATM is at the

hub of the response to DSBs. ATM rapidly accumulates at DNA

lesions in a MRE11/RAD50/NBS1 (MRN)-dependent manner to

initiate a cascade of protein recruitment at sites of DNA damage

(Bekker-Jensen et al., 2006). This chromatin-based cascade

promotes DNA repair and activation of cell-cycle checkpoints,

two critical outcomes of the DNA damage response. The accumu-

lation of proteins at DSB sites produces characteristic subnuclear

foci that are easily visualized by fluorescence microscopy.

ATM promotes the relocalization of many repair and signaling

proteins at DNA breaks largely via the phosphorylation of the

histone H2A variant H2AX on Ser139 (Rogakou et al., 1998; Stiff

et al., 2004). H2AX phosphorylation (referred to as g-H2AX)

establishes a chromatin domain onto which regulators of the

DSB response accumulate. In particular, the g-H2AX phosphoe-

pitope is directly recognized by the BRCT domains of the medi-

ator protein MDC1 (Lou et al., 2006; Stewart et al., 2003; Stucki

et al., 2005). MDC1 acts as a molecular scaffold that stabilizes

the MRN complex bound to damaged chromatin while

promoting further accumulation of MRN and activated ATM.

MDC1, therefore, amplifies the ATM-dependent DNA damage

response (Lou et al., 2006; Stucki et al., 2005).

MDC1 is also phosphorylated by ATM on ‘‘TQXF’’ motifs (Huen

et al., 2007; Kolas et al., 2007; Matsuoka et al., 2007) that

promote the recruitment of RNF8, an E3 ubiquitin ligase (Huen

et al., 2007; Kolas et al., 2007; Mailand et al., 2007; Plans

et al., 2006). RNF8, in turn, independently stimulates the
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recruitment of the RAP80-ABRA1-BRCA1 complex and the

accumulation of 53BP1 at sites of DNA damage (Huen et al.,

2007; Kolas et al., 2007; Mailand et al., 2007; Sakasai and Tib-

betts, 2008; Wang and Elledge, 2007). RNF8 most likely facili-

tates the relocalization of these repair proteins by catalyzing

the ubiquitylation of H2A-type histones surrounding the DNA

lesion (Huen et al., 2007; Mailand et al., 2007). Because the ubiq-

uitin-binding motifs of RAP80 (UIMs) mediate BRCA1 recruit-

ment to sites of DNA lesions, it is likely that RAP80 directly binds

the products of RNF8 ubiquitylation to facilitate BRCA1-depen-

dent DSB repair. By contrast, 53BP1 does not possess ubiqui-

tin-binding domains, and its localization to DNA damage sites,

rather, depends on its Tudor domain, a methyl-lysine residue-

binding module (Botuyan et al., 2006; Huyen et al., 2004). It is,

therefore, possible that modification of chromatin by RNF8

enables the recognition of methylated histones by the 53BP1

Tudor domain. The precise function of 53BP1 and its role during

the cellular response to DNA damage is unclear, although it has

been implicated in regulating the G2/M phase checkpoint (DiTul-

lio et al., 2002; Wang et al., 2002) class switch recombination

(CSR) (Manis et al., 2004) as well as repair of DNA DSBs via

nonhomologous end-joining (NHEJ) (Difilippantonio et al., 2008).

Recently, RIDDLE (radiosensitivity, immunodeficiency, dys-

morphic features, and learning difficulties) syndrome, a novel

human immunodeficiency disorder associated with defective

DSB repair, has been described (Stewart et al., 2007). RIDDLE

syndrome shares overlapping clinical features with A-T, and cells

derived from a RIDDLE patient (15-9BI) exhibit impaired relocal-

ization of 53BP1 and BRCA1 to DSBs, while MDC1 and NBS1

remain unaffected (Stewart et al., 2007). However, efforts to

identify the gene responsible for this disorder have so far failed,

suggesting that a novel participant of the DNA damage response

is responsible for this syndrome.

Here, we report the identification of the gene mutated in

RIDDLE syndrome, RNF168, by mining an RNA interference

screen that examined 53BP1 focal accumulation at sites of

DNA damage. RNF168 itself accumulates at DSBs downstream

of RNF8 through a physical interaction with ubiquitylated H2A.

Like RNF8, RNF168 is also an E3 ubiquitin ligase that acts in

concert with UBC13 to catalyze the formation of lysine 63

(K63)-linked ubiquitin conjugates and promotes the ubiquityla-

tion of H2A-type histones surrounding the damage, thereby

amplifying, or spreading, the regulatory ubiquitylation signal initi-

ated by RNF8. In turn, RNF168-dependent ubiquitylation medi-

ates the accumulation of 53BP1 and BRCA1 at DNA lesions to

promote DSB repair, DNA damage checkpoints, and survival

following IR exposure. Our results, therefore, indicate that the

protein ubiquitylation cascade controlled by RNF8 and RNF168

is a physiologically important response to DSBs in human cells

and suggest that the RNF8/RNF168 pathway might be an impor-

tant conduit for ATM-dependent DNA damage signaling.

RESULTS

RNF168 Promotes the Accumulation of 53BP1
and BRCA1 at Sites of DNA Damage
A hallmark of RIDDLE cells is the inability of 53BP1 to relocalize

to sites of DNA double-strand breaks (Stewart et al., 2007). In the
absence of any detectable mutations in either RNF8 or UBC13 in

these cells (G.S.S., unpublished data), we reasoned that any new

gene necessary for 53BP1 focus formation would be an ideal

candidate for being mutated in the RIDDLE syndrome. There-

fore, we mined a siRNA screen that utilized 53BP1 focus forma-

tion as a readout (Figure S1 available online) (Kolas et al., 2007).

From the initial screen, we narrowed down our search to a set of

59 candidate genes that displayed a statistical reduction in

53BP1 focus formation 24 hr postirradiation (Table S1). The

contribution of each of these genes for the accumulation of

53BP1 at sites of DNA damage was directly tested in a secondary

screen. HeLa cells grown in 384-well plates were transfected

with enzymatically prepared siRNA (esiRNA), as described previ-

ously (Kolas et al., 2007), and fixed 1 hr postirradiation before

being processed for 53BP1 immunofluorescence and auto-

mated microscopy. The knockdown of RNF8 was used as a posi-

tive control, and an esiRNA-targeting firefly luciferase was used

as a negative control. As shown in Figure 1A, the esiRNA-target-

ing RNF168 and ubiquitin (UBB) yielded a reduction in 53BP1

foci that approached that of RNF8 depletion. Given that ubiquitin

mutations were unlikely to cause RIDDLE syndrome, we focused

our attention on RNF168. To confirm that the impairment of

53BP1 localization to sites of DNA damage was, indeed, caused

by depletion of the RNF168 protein, we rescued the 53BP1 foci

phenotype by reintroduction of a siRNA-resistant epitope-

tagged RNF168 cDNA (RNF168*) (Figure 1B). Then, we raised

a polyclonal antibody against RNF168 that confirmed that both

the esiRNA and siRNA against RNF168 efficiently knocked down

protein expression (Figures 1C and S1E). From these results, we

concluded that RNF168 is critical for the accumulation, or reten-

tion, of 53BP1 at sites of DNA damage in response to IR.

Next, we addressed whether RNF168 is involved in the forma-

tion of BRCA1, NBS1, g-H2AX, MDC1, RIF1, and conjugated

ubiquitin foci after IR, following the siRNA-mediated depletion

of RNF168 in U2OS cells. We found that, in addition to promoting

53BP1 focus formation, RNF168 also promotes the accumula-

tion of BRCA1 and RIF1 at sites of DNA damage (Figures 1D

and S2). Moreover, RNF168 depletion severely impaired the

formation of conjugated ubiquitin foci as detected by the FK2

monoclonal antibody (Figures 1D and S2). In contrast, RNF168

depletion by RNAi did not adversely affect the formation of

g-H2AX, MDC1, and NBS1 IR-induced foci (Figures 1D and

S2). Therefore, we concluded that RNF168 plays an important

role in the ubiquitylation pathway that mediates 53BP1 and

BRCA1 recruitment to sites of DNA damage downstream of

MDC1. Importantly, the phenotypes imparted by RNF168 deple-

tion overlap with those observed in cells derived from the 15-9BI

RIDDLE patient. RNF168 was, therefore, considered as a prime

candidate for the gene mutated in the RIDDLE syndrome.

Biallelic Mutations in RNF168 Cause RIDDLE Syndrome
To look for RNF168 mutations in 15-9BI RIDDLE cells, we ampli-

fied and sequenced the RNF168 exons from genomic DNA

(Figure 2A). Two mutations were identified. The first mutation

was a duplication of a G nucleotide at position 397 (c.397

dupG). This insertion produces a frameshifted mRNA that codes

for a protein that contains the first 132 amino acid residues of the

wild-type protein followed by 12 residues coded by the shifted
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reading frame (p.Ala133GlyfsX11; A133fsX in short) (Figure 2B).

The second mutation was a deletion of nucleotides 1323–1326

(c.1323_1326 delACAA) leading to a predicted protein that

contains the first 441 wild-type residues of RNF168 followed

by 46 amino acid residues resulting from the shifted reading

frame (p.Gln442LysfsX45, referred to hereafter as Q442fsX)

(Figure 2B). Moreover, sequencing RNF168 in the parents of

15-9BI indicated that the c.397 dupG mutation originated from

the father, whereas the c.1323_1326 delACAA mutation was

transmitted by the mother (Figure 2A). The 15-9BI patient, there-

fore, contains biallelic mutations in the RNF168 gene, which are

predicted to result in aberrant RNF168 proteins. These results

strongly suggest that RIDDLE is a recessive disorder.

To determine whether the mutant RNF168 proteins are ex-

pressed in RIDDLE cells, we generated an additional antibody

directed against the N-terminal region of RNF168. This anti-

body detects endogenous RNF168 after immunoprecipitation

(Figure S3) and was used to immunoprecipitate RNF168 from

BJ human fibroblasts, RIDDLE 15-9BI cells, and 15-9BI cells

stably expressing wild-type RNF168. While we readily detected

RNF168 in BJ and 15-9BI cells expressing RNF168, in the

15-9BI cells, we failed to detect any band that would correspond

to the A133fsX or Q442fsX mutant proteins (Figure 2C). These

results indicate that, in cells derived from the 15-9BI patient,

the RNF168 mutant proteins, if expressed at all, are grossly

underexpressed relative to normal levels.

Analysis of the predicted RNF168 protein sequence sug-

gested that RNF168 might be an E3 ubiquitin ligase by virtue of

its N-terminal RING finger motif (Figure 2B). Furthermore,

RNF168 contains two ubiquitin interaction motifs, termed MIU

for ‘‘motif interacting with ubiquitin,’’ that have been shown to

selectively bind to ubiquitin chains (Penengo et al., 2006). Inter-

estingly, neither RNF168 mutations found in the 15-9BI patient

affect the RING finger motif, but both result in predicted proteins

that either lack a single (Q442fsX) or both (A133fsX) MIU motifs

(Figure 2B).

To ascertain whether the RNF168 gene is responsible for the

cellular phenotypes associated with RIDDLE syndrome, we

introduced wild-type RNF168 tagged with hemagglutinin (HA)

into 15-9BI fibroblasts via retroviral transduction (Figure 2D).

Two independent clones were selected, and their clonogenic

survival in response to IR was determined. As shown in

Figure 2E, wild-type HA-RNF168 restores radio resistance to

the 15-9BI fibroblasts. In addition, the HA-RNF168-comple-

mented cells became proficient in the accumulation of BRCA1,

53BP1, RAP80, and ubiquitin conjugates at sites of DNA damage

(Figures 2F and S4). Together, these data indicate that recessive
mutations in the RNF168 gene are responsible for the cellular

defects observed in the 15-9BI patient.

DNA Damage Signaling by RNF168 Requires Its RING
and MIU Domains
The presence of a RING finger in RNF168 along with the two MIU

motifs suggests that its putative E3 ligase activity, or its ability to

bind ubiquitin, might be important for its function in the DNA

damage response. To map the functionally relevant regions of

RNF168, we generated a set of HCT116 cell lines that express

siRNA-resistant RNF168 (wild-type or mutant) under the control

of a tetracycline-inducible promoter. First, we deleted the RING

finger (DRING) to examine the contribution of the potential E3

ligase activity of RNF168 since point mutations in the RING finger

motif resulted in proteins that were poorly expressed (data not

shown). To assess the contribution of the MIU motifs, we intro-

duced mutations that impair but do not totally abolish ubiquitin

binding (Penengo et al., 2006) singly or in combination (yielding

the A179G, A450G, and A179/A450G mutants). In addition, we

also excised the entire MIU motifs singly or in combination

(yielding the DMIU1, DMIU2, and DMIU1/2 mutants). Addition

of tetracycline (tet) to the media for 24 hr resulted in exogenous

protein expression that was roughly 3- to 5-fold higher than that

of the endogenous protein (Figure S5A).

Using these cell lines, we depleted endogenous RNF168 by

RNAi prior to tet-mediated induction. The cells were then irradi-

ated and processed for 53BP1 immunofluorescence. Utilizing

this approach, we found that the RNF168 RING finger was crit-

ical to promote the formation of 53BP1 foci (Figures 3 and

S10). Interestingly, the A179G point mutation in MIU1 did not

impair RNF168 function, whereas the MIU2 A450G and double

A179G/A450G mutation(s) progressively led to a large reduction

in the number of 53BP1 foci-positive cells following irradiation

(Figure 3). Examination of the 53BP1 focus morphology revealed

that the 53BP1 foci formed in the A179G/A450G line were mark-

edly smaller than those of wild-type cells (Figure 3B). A similar

picture emerges when 53BP1 focus formation was examined

in cells expressing RNF168 lacking one or both MIU motifs. We

found that deletion of MIU1 had little effect on the ability of cells

to form53BP1 IR-induced foci, whereas deletion of MIU2 impaired

53BP1 focus formation to levels similar to those observed with

the A179G/A450G double mutation (Figure 3). However, in the

context of the MIU2 deletion, MIU1 nevertheless played some

function, as deletion of both MIUs further impaired 53BP1 relocal-

ization to DSB sites to background levels (Figure 3). Therefore, we

concluded that RNF168 requires its RING finger and MIU motifs

(primarily MIU2) to promote DNA damage signaling.
Figure 1. RNF168 Promotes the Accumulation of 53BP1 and BRCA1 IR-Induced Foci

(A) HeLa cells seeded in 384-well plates were transfected with the indicated esiRNA. At 24 hr posttransfection, cells were irradiated with a 10 Gy dose, fixed 1 hr

post-IR, and processed for 53BP1 immunofluorescence and quantitation as described previously (Kolas et al., 2007). The 53BP1 focus index represents the

number of 53BP1 foci detected in a confocal slice using our spot-finding algorithm. Data are represented as the mean ± SEM (n = 4).

(B) HeLa cells were transfected first with either nontargeting (siCTRL) or RNF168 (siRNF168) siRNAs. After transfection, cells were reseeded and transfected with

an empty control vector (empty) or a siRNA-resistant FLAG-tagged RNF168 expression vector (RNF168*). Twenty-four hours later, cells were irradiated with

a 10 Gy dose, fixed 1 hr post-IR, and processed for 53BP1 immunofluorescence. The upper panels display representative micrographs, and the data in the lower

panel represent the mean ± SEM (n = 3).

(C) Representative knockdown of RNF168 in HeLa cells using esiRNA. LUC, luciferase.

(D) U2OS cells transfected either with control (siCTRL) or RNF168 (siRNF168) siRNAs were either mock treated (�IR) or irradiated with a 10 Gy dose (+IR). At 1 hr

post-IR, cells were fixed and processed for immunofluorescence using the indicated antibodies. Quantitation of the data can be found in Figure S2.
Cell 136, 420–434, February 6, 2009 ª2009 Elsevier Inc. 423



Figure 2. RNF168 Is the Gene Mutated in the RIDDLE Syndrome
(A) Sequencing of the RNF168/RNF168 exons in cells derived from the 15-9BI RIDDLE patient and his parents.
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(B) Schematic structure of RNF168. The predicted mutant proteins encoded by the maternal (c.1323_1326 delACAA) and paternal (c.397 dupG) RNF168 mutant

alleles are shown. The blue shaded area of the RIDDLE-associated mutant proteins marks sequences produced by the frameshifted open reading frame.

(C) Whole-cell extracts (WCE) from BJ cells, 15-9BI cells transduced with either an empty retrovirus (15-9BI) or wild-type RNF168 (15-9BI + WT), were subjected

to immunoprecipitation followed by immunoblotting with the RNF168 (N) antibody. Actin is used as loading control for the WCE.

(D) WCE from 15-9BI cells transduced with a retrovirus containing no insert (+vector) or HA-RNF168 (+RNF168; two independent clones are presented) were

separated on SDS-PAGE and subjected to HA and SMC1 immunoblotting. SMC1 is used as loading control.

(E) Clonogenic survival of the 15-9BI cells described in (D) following irradiation. Data are represented as mean ± SEM (n = 3).

(F) Control-transfected (15-9BI+vector) or RNF168-complemented (15-9BI + RNF168) RIDDLE cells were either mock treated (no IR) or irradiated with a dose of

5 Gy. Cells were fixed 1 hr post-IR and processed for 53BP1, RAP80, BRCA1, and anti-ubiquitin conjugate (FK2) immunofluorescence. Representative micro-

graphs are shown. A time course of this experiment is shown in Figure S4.
RNF168 Accumulates at Sites of DNA Damage
in an MIU-Dependent Manner
The functional importance of RNF168 for the DNA damage

response prompted us to test whether RNF168 itself accumu-

lated at sites of DNA damage. We found that endogenous

RNF168 rapidly relocalized to g-H2AX-positive subnuclear foci,

as soon as 5 min after irradiation (Figure 4A). The loss of these

foci in cells transfected with RNF168 siRNA confirmed the

specificity of the antibody in immunofluorescence (Figure S6A).

The rapid accumulation of RNF168 into foci was also observed

in cells expressing green fluorescent protein (GFP)-tagged

versions of RNF168 (Figure S6B). Collectively, these observa-

tions suggest that RNF168 acts locally at the site of DNA breaks

to promote the DNA damage response.

Next, we mapped the domains of RNF168 required for its

localization to sites of DNA damage. We introduced, in the

context of GFP-RNF168, mutations that disrupted the RING

finger or MIU motifs as well as the RIDDLE syndrome mutations

described above. Wild-type RNF168 and the allelic series pre-

sented were transiently (Figures 4B and S5B) or stably

(Figure S7) transfected into HeLa and U2OS cells, respectively,

for foci analyses. Surprisingly, we found that deletion of the

RING finger (DRING) did not affect RNF168 focus formation after

IR (Figures 4B and 4C). In contrast, RNF168 accumulation at

sites of DNA damage required functional MIU motifs. Whereas

the A179G and A450G mutations individually had a minimal

impact on the ability of RNF168 to form foci, we found that the

A450G mutation in MIU2 impaired the maintenance of RNF168

at sites of DNA damage (see the 4 hr and 8 hr time points,

Figure S7). The double A179G/A450G mutation severely

impaired, but did not totally abolish, the ability of RNF168 to

form foci especially at early time points after IR (Figures 4B,

4C, and S7). This latter result was consistent with the observa-

tion that the A / G point mutants are not entirely null for ubiquitin

binding. We next examined the impact of MIU deletions on

RNF168 localization. Deletion of MIU1 (DMIU1) did not impair

RNF168 accumulation at sites of DNA damage (Figures 4B and

4C). In contrast, deletion of the MIU2 domain (alone or in the

context of the DMIU1/2 mutant) severely impaired the focal

redistribution of RNF168 (Figures 4B and 4C). These results indi-

cate that RNF168 localization at sites of DNA damage depends

on its MIU motifs, primarily mediated through MIU2.

Finally, we examined whether the A133fsX and Q442fsX

mutant RNF168 proteins could relocalize to DSBs. As shown in

Figure 4B, the product of neither RIDDLE allele was able to

form IR-induced foci, in line with the observation that they both

lack the MIU2 motif.
H2A Ubiquitylation Mediates Accumulation of RNF168
at DNA Lesions
As a means to place RNF168 in the DNA damage signaling

cascade, we quantitated RNF168 foci in cells depleted of

MDC1, RNF8, NBS1, 53BP1, and BRCA1. As shown in

Figure 5AB, RNF168 foci are abrogated in cells depleted of

MDC1 and RNF8, whereas they are unaffected in cells depleted

of NBS1, 53BP1, and BRCA1. These observations indicate that

RNF168 acts either downstream or at the same level as RNF8

to promote DNA damage signaling. To distinguish between

these two possibilities, we examined RNF8-YFP focus formation

in RNF168-depleted cells. Strikingly, upon RNF168 depletion,

RNF8 still accumulated at DSBs (Figure 5C), strongly indicating

that RNF168 acts downstream of RNF8.

This latter result, coupled with the critical importance of the

MIUs for formation of RNF168 foci, suggested that RNF168 is re-

cruited to DNA lesions by binding to ubiquitylated substrates of

RNF8. In support of this possibility, we found that the RNF8 RING

finger was necessary to promote RNF168 foci (Figures 5D and

5E and S5B). In addition, we ascertained that UBC13, proposed

to be the RNF8 E2, was also critical for RNF168 focus formation

(Figure 5F). Lastly, we took advantage of the observation that

MG132 treatment greatly reduces H2A ubiquitylation (Mailand

et al., 2007). As a consequence, MG132 inhibits the formation

of BRCA1 and 53BP1 IR-induced foci while having little or no

effect on RNF8 focus formation (Jacquemont and Taniguchi,

2007; Mailand et al., 2007). Addition of MG132 to cells prior to

irradiation profoundly inhibited the accumulation of RNF168 at

sites of DNA damage (Figure S6C). Together, these results

demonstrate that RNF168 localization at sites of DNA damage

depends on protein ubiquitylation carried out by RNF8-UBC13.

Because histones H2A and H2AX have been shown to be

targets of the RNF8-UBC13 E3 ligase activity (Huen et al.,

2007; Mailand et al., 2007), we therefore examined whether

RNF168, via its MIUs, can physically interact with ubiquitylated

H2A (uH2A). We transfected FLAG-RNF168 (wild-type or MIU

deletion mutants) into HEK293 T cells and prepared chromatin-

enriched fractions that were subjected to FLAG immunoprecip-

itation. As shown in Figure 6A, wild-type RNF168 interacts with

uH2A, in particular the diubiquitylated form. This interaction is

slightly reduced in the DMIU1 mutant but is abolished by the

DMIU2 or DMIU1/2 mutations. Remarkably, the requirement for

the MIU2 motif for the RNF168-uH2A interaction mirrors the

requirement for formation of RNF168 IR-induced foci. Next, we

examined whether this interaction was dependent on DNA

damage and RNF8. As expected, we observed that the RNF168-

uH2A interaction is stimulated by DNA damage and is greatly
Cell 136, 420–434, February 6, 2009 ª2009 Elsevier Inc. 425
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RNF168 Is a UBC13-Dependent E3 Ubiquitin Ligase
The functional importance of the RNF168 RING finger prompted

us to examine whether RNF168 is a bona fide E3 ubiquitin ligase.

We expressed full-length RNF168, as well as the C19S and

DRING mutants, as recombinant GST fusion proteins in bacteria

(Figure S9A). We then assembled in vitro ubiquitylation reactions

in which the RNF168 proteins were added to a panel of E2

enzymes (UBC1, UBC3, UBC7, and UBC13/MMS2) in addition

to the E1 (UBE1), ATP, and ubiquitin. Protein ubiquitylation was

assessed by immunoblotting using the FK2 antibody to detect

conjugated ubiquitin. As shown in Figure 6D, RNF168 robustly

autoubiquitylates when reactions are carried out in the presence

of the UBC13-MMS2 complex, but not with any other E2 enzyme

tested. Furthermore, this autoubiquitylation activity of RNF168

requires a functional RING finger since the C19S mutation or

deletion of the RING finger completely abolished ubiquitin conju-

gation (Figure 6D). Identical results were obtained when RNF168

immunopurified from HEK293 T cells was used in similar ubiqui-

tylation assays (Figure S9B). We also examined whether the E3

activity of RNF168 was affected by the MIU point mutations or

the RIDDLE syndrome mutations. Predictably, these mutants

displayed normal levels of E3 ligase activity since they do not

impact the RING finger (Figure S9C).

The notion that UBC13 acts as the RNF168 E2 is significant

given the importance of UBC13 in orchestrating the response

to IR. To further explore this relationship, we tested whether

UBC13 and RNF168 interact together using coimmunoprecipita-

tion studies. We detected an interaction of either endogenous

(Figure 6E) or epitope-tagged RNF168 (Figure S9D) with UBC13

that was dependent on its RING finger domain. RNF168 is, there-

fore, an E3 ubiquitin ligase that utilizes UBC13 as its E2.

Next, we sought to determine what type of ubiquitylation

linkage is catalyzed by RNF168-UBC13. Initially, we carried out

in vitro ubiquitylation assays in which different ubiquitin lysine

mutants were used. We found that RNF168 generates ubiquitin

conjugates with wild-type, K6R, and K48R ubiquitin, but not

with the K63R ubiquitin mutant or a ubiquitin version that lacks

all lysine residues (K0) (Figure 6F). These results indicate that

RNF168, in the presence of UBC13, catalyzes K63-linked polyu-

biquitin (UbK63) chains, a result confirmed when the products of

the above reactions were probed with an anti-UbK63 antibody

(Figure 6F).

To determine whether RNF168 is also necessary for the forma-

tion of K63-linked ubiquitin conjugates in vivo, we took advan-

tage of novel human monoclonal antibodies directed against

K48 (UbK48) or UbK63 chains (Newton et al., 2008). These anti-

bodies were used in immunofluorescence experiments to deter-

mine what type of ubiquitin conjugation occurred at sites of DNA

damage. As shown in Figures 6G and S10, UbK63 (but not

UbK48; data not shown) were detected in IR-induced foci that

colocalize with g-H2AX. Not surprisingly, the formation of

UbK63 chains was entirely dependent on UBC13, the only E2

known to catalyze such chain linkage (Figure 6G). Importantly,

depletion of RNF8 or RNF168 strongly impaired formation of

UbK63 foci, consistent with these enzymes acting with UBC13

at sites of DNA damage. Moreover, deletion of the RNF168

RING finger abolished the formation of UbK63 foci (Figure S10),

indicating that the E3 ligase activity of RNF168 is necessary to
reduced in cells treated with RNF8 siRNA (Figures 6B and 6C).

These results suggest that RNF8-dependent H2A ubiquitylation

mediates the accumulation of RNF168 at sites of DNA damage.

Figure 3. RNF168 Function Requires Its RING and MIU Motifs

(A–C) Flp-In/T-Rex HCT116 cell lines expressing the indicated RNF168

mutants under a tetracycline-inducible promoter were seeded into 10 cm

dishes and transfected with nontargeting (CTRL) or RNF168 siRNA. Cells

were then reseeded onto coverslips (for immunofluorescence) and in 6 cm

dishes to analyze protein expression. RNF168 expression was induced for

24 hr as described in the Experimental Procedures. Cells were then irradiated

(10 Gy) and fixed 1 hr post-IR to be processed for immunofluorescence (B),

quantitation of 53BP1 foci (A), and immunoblotting (C). Data in (A) are repre-

sented as the mean ± SEM (n = 4).



Figure 4. RNF168 Accumulates at Sites of DNA Damage

(A) U2OS cells were either irradiated with a 10 Gy dose or mock treated (�IR). After the indicated time points, cells were fixed and processed for RNF168 and

g-H2AX immunofluorescence. DNA was stained with DAPI.

(B) HeLa cells transfected with the indicated GFP-RNF168 expression vectors were irradiated with a 5 Gy IR dose. At the indicated time points, cells were fixed

and processed for GFP fluorescence and g-H2AX immunofluorescence. DNA was stained with DAPI.

(C) Quantitation of (B). Data are represented as the mean ± SD (n = 3).
RNF168 Targets H2A-Type Histones
Ubiquitylated H2A can be detected in IR-induced foci that coloc-

alize with g-H2AX (Nicassio et al., 2007). Therefore, we examined

whether formation of uH2A foci was dependent on RNF8,

RNF168, or UBC13. To our surprise, we found that the formation
build UbK63 at DNA damage sites. Lastly, depletion of 53BP1

and especially BRCA1, another E3 ligase, did not impair the

formation of K63-linked ubiquitin conjugates at DSBs (Figure 6G).

These results indicate that RNF168 catalyzes K63-linked ubiqui-

tylation on the chromatin that surrounds DNA lesions.
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Figure 5. RNF168 Acts Downstream of RNF8

(A) U2OS cells transfected either with control (siCTRL) or the indicated siRNAs were irradiated with a 10 Gy dose. At 1 hr after irradiation, cells were fixed and

processed for RNF168 and g-H2AX immunofluorescence. Controls for the effectiveness of the siRNAs used in this experiment can be found in Figure S8.

(B) Quantitation of RNF168 foci from the experiment described in (A). Data are represented as the mean ± SD (n = 3).

(C) U2OS cells stably transfected with YFP-RNF8 were transfected either with control (siCTRL), MDC1 (siMDC1), or RNF168 (siRNF168) siRNAs. At 36 hr post-

transfection, cells were either mock treated (�IR) or X irradiated with a 10 Gy dose (+IR). At 1 hr after irradiation, cells were fixed and processed for YFP and

g-H2AX immunofluorescence. DNA was stained with DAPI. Scale bar, 16 mm.

(D) HeLa cells were transfected first with either nontargeting control (CTRL) or RNF8 (RNF8) siRNAs. After transfection, cells were reseeded onto coverslips and

transfected either with an empty control vector (empty) or murine FLAG-RNF8 vectors (mRNF8 or mRNF8 DRING). Murine RNF8 mRNA is resistant to a human

siRNA pool against RNF8 (Kolas et al., 2007). At 24 hr after plasmid transfections, cells were irradiated with a 10 Gy dose, fixed 1 hr post-IR, and processed for

RNF168 immunofluorescence. Refer to Figure S5C for control immunoblots.

(E) Quantitation of RNF168 foci from the experiment described in (D). Data are represented as the mean ± SD (n = 3).

(F) U2OS cells transfected either with control (siCTRL) or UBC13 siRNAs were irradiated with a 10 Gy dose. At 4 hr after irradiation, cells were fixed and processed

for RNF168, g-H2AX, and conjugated ubiquitin (FK2) immunofluorescence. The percentage of cells in the population that display the represented phenotype is

indicated on the micrograph.
of uH2A foci was not only dependent on RNF8-UBC13, but was

also dependent on the presence of RNF168 (Figure 7A). Forma-

tion of uH2A foci was independent of BRCA1 and 53BP1,

pointing to RNF168 as being critical for the generation of uH2A

IR-induced foci. Importantly, cells expressing the RNF168

DRING were unable to support uH2A foci formation, arguing

against the possibility that the physical binding of RNF168 to

uH2A decreased its removal from chromatin (Figure S10). H2A-

type histones might, therefore, be targeted in vivo by both

RNF8 and RNF168.

The above results suggest that RNF168 and RNF8 have over-

lapping sets of substrates. However, another possibility might be

that RNF168 is necessary for RNF8 action at sites of DNA

damage. To distinguish between these possibilities, we exam-

ined whether RNF168 overexpression in RNF8-depleted cells

restored 53BP1 focus formation. As shown in Figures 7B and

S5D, overexpression of wild-type RNF168 indeed restored

53BP1 focus formation in more than 50% of the RNF8-depleted

cells. Together, these results support a model whereby RNF168

and RNF8 have overlapping substrates and RNF168 lies down-

stream of RNF8.

Next, we directly tested whether RNF168 can ubiquitylate H2A

in E3 ligase reactions in which either recombinant H2A or H2B

was added to RNF168-UBC13. We observed that H2A, not

H2B, is specifically ubiquitylated by RNF168 (Figure 7C),

strongly supporting the possibility that H2A-type histones are

RNF168 substrates.

Finally, to gain direct evidence that RNF168 catalyzes the

formation of ubiquitylated H2A, we examined the ubiquitylation

status of H2A in response to DNA damage (Huen et al., 2007). We

isolated bulk histones by acid extraction of irradiated HeLa

cells transfected with control or RNF168 siRNAs. As shown in

Figure 7D, we observed that RNF168 depletion reduces the

levels of radiation-induced histone H2A ubiquitylation, in partic-

ular the diubiquitylated form. We conclude that RNF168 can

catalyze the ubiquitylation of H2A-type histones in response to

DNA damage.

DISCUSSION

We report that mutations in RNF168 are responsible for RIDDLE

syndrome. RNF168 depletion impairs the accumulation of

53BP1 and BRCA1 at sites of DNA lesions and impacts both
the S and G2/M checkpoints (K.T., S.P., D.D., and G.S.S.,

unpublished data). Although it is unclear which aspects of

RNF168 deficiency contribute to the syndrome phenotype, we

speculate that, given the known function of 53BP1 in promoting

DSB repair during CSR, it is the failure of 53BP1 to be relocalized

during this process that is the underlying cause of the immuno-

deficiency in this patient. Although we previously failed to detect

any gross defects in NHEJ in RIDDLE cells (Stewart et al., 2007),

the recent demonstration of a role for 53BP1 in promoting

nonclassical NHEJ during V(D)J recombination (Difilippantonio

et al., 2008) suggests that RNF168 may act to organize the chro-

matin to facilitate long-range NHEJ.

The Action of RNF8 and RNF168 at Sites of DNA Damage
RNF8, RNF168, and BRCA1 define an emerging regulatory ubiq-

uitylation cascade initiated by DSBs. Our observation that RNF8

and RNF168 are sequentially recruited to DNA lesions strongly

suggests that they act successively, possibly by ubiquitylating

separate substrates (Figure 7E). However, we also report

evidence that RNF168 amplifies RNF8-dependent H2A ubiquity-

lation. With respect to H2A ubiquitylation, RNF8 acts primarily to

increase the local concentration of RNF168 at sites of DNA

damage by initiating the ubiquitylation of H2A-type histones,

which then act as a signal to physically recruit RNF168 via its

MIU motifs to the sites of DNA damage (Figure 7E). In support

of this model, in an accompanying paper, Doil et al. also describe

the identification of RNF168 and propose a similar model of

RNF168 action at sites of DNA damage (Doil et al., 2009 [this

issue of Cell]). The cooperation of RNF8 and RNF168 to ubiqui-

tylate histones as a means to reorganize chromatin is not

a unique phenomenon because H2A and H2B ubiquitylation

during transcriptional regulation also requires the action of two

E3 ligases, Ring1a and Ring1b (for H2A) and RNF20 and

RNF40 (for H2B) (Wang et al., 2004; Zhu et al., 2005).

The availability of novel antibodies against K63-linked ubiqui-

tin chains (Newton et al., 2008) has allowed us to demonstrate

that RNF168 promotes the formation of K63-linked ubiquitin

conjugates at sites of DNA damage. However, at this stage,

we have been unable to provide in vivo evidence that UbK63

chains are assembled on H2A or H2AX. Given that K63-linked

ubiquitylation clearly plays an important role during the organiza-

tion of the DNA damage response (Sobhian et al., 2007), the

identification of additional targets of RNF8 and RNF168,
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Figure 6. RNF168 Binds to uH2A and Is a UBC13-Dependent E3 Ligase

(A) HEK293 T cells transfected with the indicated FLAG-RNF168 vectors were irradiated (20 Gy), and chromatin-enriched extracts (CEE) were prepared 4 hr

post-IR. (Upper panel) CEE were subjected to FLAG immunoprecipitation and then separated on SDS-PAGE and subjected to FLAG, ubiquitylated (uH2A), or

total H2A (H2A) immunoblotting. (Lower panel) CEE were probed with the same antibodies as above. The diubiquitylated H2A band is shown for the uH2A blot.

(B) HEK293 T transfected with FLAG-RNF168 were irradiated with a 20 Gy dose (+IR) or left untreated (�IR). At 4 hr postirradiation, CEE were prepared and sub-

jected to FLAG immunoprecipitation. Precipitates were separated on SDS-PAGE and subjected to FLAG and ubiquitylated (uH2A) immunoblotting.

(C) HEK293 T cells were first transfected with nontargeting control (siCTRL) or RNF8 (siRNF8) siRNAs. Cells were then transfected with the indicated FLAG-

RNF168 expression constructs and irradiated (20 Gy), and CEE were prepared 4 hr post-IR. (Upper panel) The extracts were subjected to FLAG immunoprecip-

itation, separated on SDS-PAGE, and immunoblotted with antibodies to FLAG, uH2A, or H2A. (Lower panel) CEE were probed with the indicated antibodies.

(D) In vitro ubiquitylation assays employing recombinant GST-RNF168 proteins were assembled as described in the Experimental Procedures. The reaction prod-

ucts were analyzed by immunoblotting with anti-ubiquitin conjugate (FK2) and anti-RNF168 antibodies.

(E) HEK293 T WCE were subjected to UBC13 immunoprecipitation (IP). The immunoprecipitates were separated on SDS-PAGE and subjected to UBC13 and

RNF168 immunoblotting.

(F) In vitro ubiquitylation assays using recombinant GST-RNF168 proteins were assembled in the presence of wild-type or the indicated mutated ubiquitin

proteins. The reaction was analyzed by immunoblotting with ubiquitin conjugate (FK2) (upper-left panel), RNF168 (lower-left panel), and UbK63 antibodies (right

panel).

(G) U2OS cells transfected either with control (siCTRL) or the indicated siRNAs were irradiated with a 10 Gy dose. At 4 hr after irradiation, cells were fixed and

processed for K63-linked ubiquitin chain (UbK63) and g-H2AX immunofluorescence. Controls for the effectiveness of the siRNAs can be found in Figure S8. DNA

was counterstained with DAPI.

(H) Quantitation of UbK63 foci from the experiment described in (G). Foci-positive cells were defined as cells with more than ten defined UbK63 foci. Data are

represented as the mean ± SD (n = 3).
Generation of a siRNA-Resistant Flag-RNF168-Expressing Vector

To generate RNF168 constructs resistant to RNF168 siRNA#4 from Dharma-

con (D-007152-04), we introduced the following underlined silent mutations

in RNF168: 50-GAGGAGTCGTGTTTATTGA-30.

Antibodies

We employed the following antibodies: 53BP1 (clone 19, BD Biosciences;

NB100-305, Novus Biologicals), MDC1 (clone MDC1-50, Sigma-Aldrich;

AbD, Serotec), g-H2AX (clone JBW301, Upstate), BRCA1 (clones MS110, Cal-

biochem; D9, Santa Cruz), RAP80 (Bethyl Laboratories), histone H3 phospho-

serine 10 (clone 6G3, Cell Signaling Technologies), conjugated ubiquitin (clone

FK2, Stressgen), UbK63 (clone Apu3.A8, Genentech), UbK48 (clone Apu2.07,

Genentech), UbK63 (clone HWA4C4, Biomol International), RNF8 (gift of J.

Chen), uH2A (clone E6C5, Upstate), uH2B (clone NRO3, Médimabs), GST

(clone B4, Santa Cruz), Nbs1 (Novus Biologicals), RIF1 (Bethyl Laboratories),

FLAG (M2, Sigma), actin (clone JLA20, Calbiochem), HA (clone 12CA5), and

UBC13 (clone 4E11, Zymed). The RNF168 polyclonal antibodies were raised

against GST-RNF1681–200 (antibody N) and GST-RNF168380–571 (antibody C)

fusion proteins and were affinity purified.

E3 Ubiquitin Ligase Assays

Ubiquitin ligase assays were performed as follows. Assays were set up in

a total volume of 25 ml in 50 mM Tris-HCl (pH 8.0) and 1 mM DTT. Recombinant

GST-RNF168 (0.2 mM) was added to 0.4 mM of the indicated E2 enzymes

(Boston Biochem), 0.0125 mM E1 and 16 mM ubiquitin (Boston Biochem).

Reactions were initiated by the addition of ATP (2 mM) and MgCl2 (5 mM).

SUPPLEMENTAL DATA

The Supplemental Data include Supplemental Experimental Procedures, ten

figures, and one table and can be found with this article online at http://

www.cell.com/supplemental/S0092-8674(09)00005-1.

ACKNOWLEDGMENTS

We are grateful to C. Handy, A. Datti, and T. Sun for their invaluable help with

the siRNA screen and to AC Gingras, T. Thomson, F. Sicheri, B. Wouters, J.

Chen, S. Jackson, Genentech, and J. Lukas for important reagents. We are

also grateful to Jiri and Claudia Lukas for sharing results prior to their publica-

tion. G.S.S., K.T., and E.S.M. are funded by a CR-UK career development

fellowship (ref: C17183/A5592). A.M.R.T. and P.J.B. are supported by a CR-

UK program grant. T.S. is funded by a Leukemia Research Fund-UK program

grant. S.P. holds a Boehringer Ingelheim Foundation studentship; A.K.A.-H.

holds a postdoctoral fellowship from the TD Bank; N.K.K. is a Terry Fox
especially those modified with UbK63, will be needed to resolve

how this novel protein ubiquitylation pathway promotes DNA

repair, checkpoint signaling, and the developmental processes

associated with the DNA damage response.

Finally, we expect that the discovery of RNF168 will lead to the

identification of additional RIDDLE patients and that those will,

in turn, result in a better definition of the clinical phenotype of

RIDDLE syndrome. It is still unclear whether RIDDLE syndrome

is associated with genome instability or increased tumor inci-

dence. Given that RNF168 promotes the accumulation of

BRCA1 to sites of DNA damage and is likely to function in

CSR-associated DNA repair, a process tightly linked with the

development of lymphoid malignancies, it is conceivable that

RNF168 might act as a tumor suppressor gene and play a role

in the development of sporadic malignancies, particularly those

of lymphoid origin. In this respect, it might be of significance that

the father of the RIDDLE patient has developed B cell chronic

lymphocytic leukemia. Therefore, one of the important future

challenges will be to determine whether RNF168 acts as a tumor

suppressor gene.

EXPERIMENTAL PROCEDURES

Cell Culture and Plasmid Transfection

U-2-OS (U2OS) cells were cultured in McCoy’s medium, and HeLa and

HEK293 T cells were cultured in DMEM. The 15-9BI cells were cultured as

described in Stewart et al. (2007). Stable and transient transfections were per-

formed using Effectene (QIAGEN) or Lipofectamine 2000 (Invitrogen), respec-

tively, following the manufacturer’s protocol.

Quantitation of 53BP1 Foci by High-Content Microscopy

Cell imaging using the Opera system (PerkinElmer) and image segmentation

using Acapella software (PerkinElmer) were performed exactly as described

in Kolas et al. (2007).

RNA Interference

All siRNAs employed in this study were SMARTpools (ThermoFisher) or indi-

vidual siRNAs deconvolved from the SMARTpool. esiRNAs were produced

exactly as described in Kittler et al. (2005). All RNAi transfections were per-

formed using Dharmafect 1 (ThermoFisher) or Oligofectamine (Invitrogen).
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Figure 7. RNF168 Ubiquitylates H2A

(A) U2OS cells transfected either with control (siCTRL) or the indicated siRNAs were irradiated with a 10 Gy dose. At 4 hr after irradiation, cells were fixed and

processed for ubiquitylated H2A (uH2A) and g-H2AX immunofluorescence. Controls for the effectiveness of the siRNAs can be found in Figure S8. DNA was

counterstained with DAPI. (Lower panel) Quantitation of uH2A foci. Data are represented as the mean ± SD (n = 3).

(B) HeLa cells were transfected first with either nontargeting control (CTRL) or RNF8 (RNF8) siRNAs. After transfection, cells were reseeded and transfected either

with an empty control vector (empty) or wild-type RNF168. At 24 hr after plasmid transfections, cells were irradiated with a 10 Gy dose and fixed 1 hr postirra-

diation to be processed for 53BP1 immunofluorescence. DNA was counterstained with DAPI. (Upper panel) Representative micrographs. (Bottom graph) Quan-

titation of 53BP1 foci from the experiment. Data are represented as the mean ± SD (n = 3). Control immunoblots are shown in Figure S5D.

(C) Ubiquitylation assays employing the indicated GST-RNF168 proteins were assembled with either H2A (upper panel) or H2B (lower panel) as substrates. The

reaction products were analyzed by immunoblotting with the ubiquitylated H2A (uH2A) or H2B (uH2B) antibodies. Total H2B was also monitored for input.

(D) HeLa cells were first transfected with control (siCTRL) or RNF168 (siRNF168) siRNAs. At 36 hr after transfection, cells were irradiated with a 10 Gy dose and

harvested 1 hr after irradiation. Histones were isolated by acid extraction and separated by SDS-PAGE and blotted with an anti-H2A antibody. (Upper panel) An

exposure that examines the ubiquitylated H2A species. (Lower panel) A lower exposure of the same blot showing the unmodified H2A band.

(E) Model of RNF168 action at sites of DNA damage. Following recognition of a DNA double-strand break (DSB) by the MRN complex, MDC1 is recruited to the

surrounding chromatin by binding to g-H2AX (HX), whereby it is phosphorylated on ‘‘TQXF’’ motifs by ATM. RNF8-UBC13 binds to phospho-MDC1 and ubiq-

uitylates histones H2A and H2AX. uH2A promotes recruitment of the RNF168-UBC13 complex, which, in turn, amplifies H2A ubiquitylation. RNF168 likely ubiq-

uitylates other, as-yet unidentified, chromatin-bound substrate(s) (denoted by ‘‘?’’). The ubiquitylation of various histones and other chromatin-bound proteins

surrounding the DNA break mediates the recruitment of RAP80-ABRA1-BRCA1 complex via the ubiquitin-interacting domains (UIM) of RAP80. 53BP1 relocal-

ization to sites of damage is aided by the recognition of methylated histones by its Tudor domain.
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