14 research outputs found

    A Consensus Genetic Map for Pinus taeda and Pinus elliottii and Extent of Linkage Disequilibrium in Two Genotype-Phenotype Discovery Populations of Pinus taeda

    Get PDF
    A consensus genetic map for Pinus taeda (loblolly pine) and Pinus elliottii (slash pine) was constructed by merging three previously published P. taeda maps with a map from a pseudo-backcross between P. elliottii and P. taeda. The consensus map positioned 3856 markers via genotyping of 1251 individuals from four pedigrees. It is the densest linkage map for a conifer to date. Average marker spacing was 0.6 cM and total map length was 2305 cM. Functional predictions of mapped genes were improved by aligning expressed sequence tags used for marker discovery to full-length P. taeda transcripts. Alignments to the P. taeda genome mapped 3305 scaffold sequences onto 12 linkage groups. The consensus genetic map was used to compare the genome-wide linkage disequilibrium in a population of distantly related P. taeda individuals (ADEPT2) used for association genetic studies and a multiple-family pedigree used for genomic selection (CCLONES). The prevalence and extent of LD was greater in CCLONES as compared to ADEPT2; however, extended LD with LGs or between LGs was rare in both populations. The average squared correlations, r2, between SNP alleles less than 1 cM apart were less than 0.05 in both populations and r2 did not decay substantially with genetic distance. The consensus map and analysis of linkage disequilibrium establish a foundation for comparative association mapping and genomic selection in P. taeda and P. elliottii.J.W.W. was supported by a USDA CSREES Food and Agricultural Sciences National Needs Graduate Fellowship. V.E.C. was supported by USDA NIFA Award #2011-68002-30185 (PINEMAP) and the USDA Forest Service. L.S.W. was supported by the National Science Foundation under grant no. ABI-1062432 to Indiana University. P.M.G., D.N., and K.M. were supported in part by USDA NIFA Award #2011-67009-30030 (PineRefSeq) to University of California, Davis.Peer reviewe

    Data from: What makes a leaf tough? Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a neotropical forest

    No full text
    Slow-growing juveniles of shade-tolerant plant species are predicted to have tough leaves because of the high cost of leaf replacement in shade relative to potential carbon gain. We assessed the degree of correlated evolution among eight traits associated with leaf toughness and their relationships with growth and mortality rates of 197 tree and shrub species from the understory of the 50-hectare forest dynamics plot on Barro Colorado Island, Panama. Path analysis with phylogenetically independent contrasts revealed that leaves attained material toughness (resistance to fracture per unit fracture area) through increases in tissue density, percent cellulose per unit dry mass, and vein fracture toughness. Lamina density and cellulose content evolved independently, and thus represent different paths to material toughness. Structural toughness (resistance to fracture per unit fracture length) depended on material toughness and lamina thickness. Mortality rates of individuals 1-10 cm in stem diameter were negatively correlated with material toughness and lamina density, but were independent of structural toughness and cell wall fiber contents. Leaf toughness traits were uncorrelated with relative growth rates. These results imply that material toughness enhances resistance to natural enemies, which increases survival and offsets the biomass allocation cost of producing tough leaves in the shaded understory

    Snowmass 2021 CMB-S4 White Paper

    No full text
    This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan

    Snowmass 2021 CMB-S4 White Paper

    No full text
    This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan

    Snowmass 2021 CMB-S4 White Paper

    Get PDF
    This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan
    corecore