101 research outputs found

    Halo density reduction by baryonic settling?

    Full text link
    We test the proposal by El-Zant et al that the dark matter density of halos could be reduced through dynamical friction acting on heavy baryonic clumps in the early stages of galaxy formation. Using N-body simulations, we confirm that the inner halo density cusp is flattened to 0.2 of the halo break radius by the settling of a single clump of mass \ga 0.5% of the halo mass. We also find that an ensemble of 50 clumps each having masses \ga 0.2% can flatten the cusp to almost the halo break radius on a time scale of \sim9 Gyr, for an NFW halo of concentration 15. We summarize some of the difficulties that need to be overcome if this mechanism is to resolve the apparent conflict between the observed inner densities of galaxy halos and the predictions of LCDM.Comment: 7 pages, 6 figures, uses emulateap

    High-Redshift Star-Forming Galaxies: Angular Momentum and Baryon Fraction, Turbulent Pressure Effects and the Origin of Turbulence

    Full text link
    The structure of a sample of high-redshift (z=2), rotating galaxies with high star formation rates and turbulent gas velocities of sigma=40-80 km/s is investigated. Fitting the observed disk rotational velocities and radii with a Mo, Mao, White (1998) (MMW) model requires unusually large disk spin parameters lambda_d>0.1 and disk-to-dark halo mass fraction m_d=0.2, close to the cosmic baryon fraction. The galaxies segregate into dispersion-dominated systems with 1<vmax/sigma<3, maximum rotational velocities vmax<200 km/s and disk half-light radii rd=1-3 kpc and rotation-dominated systems with vmax>200 km/s, vmax/sigma>3 and rd=4-8 kpc. For the dispersion-dominated sample, radial pressure gradients partly compensate the gravitational force, reducing the rotational velocities. Including this pressure effect in the MMW model, dispersion-dominated galaxies can be fitted well with spin parameters lf lambda_d=0.03-0.05 for high disk mass fractions of m_d=0.2 and with lambda_d=0.01-0.03 for m_d=0.05. These values are in good agreement with cosmological expectations. For the rotation-dominated sample however pressure effects are small and better agreement with theoretically expected disk spin parameters can only be achieved if the dark halo mass contribution in the visible disk regime (2-3*rd) is smaller than predicted by the MMW model. We argue that these galaxies can still be embedded in standard cold dark matter halos if the halos did not contract adiabatically in response to disk formation. It is shown that the observed high turbulent gas motions of the galaxies are consistent with a Toomre instability parameter Q=1 which is equal to the critical value, expected for gravitational disk instability to be the major driver of turbulence. The dominant energy source of turbulence is then the potential energy of the gas in the disk.Comment: 23 pages, 4 figures, ApJ, in pres

    The central dark matter content of early-type galaxies: scaling relations and connections with star formation histories

    Full text link
    We examine correlations between the masses, sizes, and star formation histories for a large sample of low-redshift early-type galaxies, using a simple suite of dynamical and stellar populations models. We confirm an anti-correlation between size and stellar age, and survey for trends with the central content of dark matter (DM). An average relation between central DM density and galaxy size of ~ Reff^-2 provides the first clear indication of cuspy DM haloes in these galaxies -- akin to standard LCDM haloes that have undergone adiabatic contraction. The DM density scales with galaxy mass as expected, deviating from suggestions of a universal halo profile for dwarf and late-type galaxies. We introduce a new fundamental constraint on galaxy formation by finding that the central DM fraction decreases with stellar age. This result is only partially explained by the size-age dependencies, and the residual trend is in the opposite direction to basic DM halo expectations. Therefore we suggest that there may be a connection between age and halo contraction, and that galaxies forming earlier had stronger baryonic feedback which expanded their haloes, or else lumpier baryonic accretion that avoided halo contraction. An alternative explanation is a lighter initial mass function for older stellar populations.Comment: 24 pages, 23 figures. MNRAS, submitted with minor modifications following referee report

    Vicious and Virtuous Cycles and the Role of External Non-government Actors in Community Forestry in Oaxaca and Michoacán, Mexico

    Get PDF
    Community forestry offers potential for socioeconomic benefits while maintaining ecosystem services. In Mexico, government and donor efforts to develop this sector focus on issues within forest communities. Often overlooked are effects of external non-government actors (NGOs and foresters) as links or barriers between communities and funding, capacity building, and technical support. To analyze the role of these actors, I analyze household survey and interview data from 11 communities with varying levels of vertical integration of forestry production in states with divergent records of community forestry, Oaxaca and Michoacán. Results suggest that strong community governance is necessary but not sufficient for vertical integration, and strong interactions with non-government actors are critical. These actors, operating within the existing framework of government regulations, have a range of incentives for engaging communities. Availability of these actors motivated by concern for community capacity instead of timber income may be a determinant of community forestry development

    ATAD3 gene cluster deletions cause cerebellar dysfunction associated with altered mitochondrial DNA and cholesterol metabolism

    Get PDF
    Although mitochondrial disorders are clinically heterogeneous, they frequently involve the central nervous system and are among the most common neurogenetic disorders. Identifying the causal genes has benefited enormously from advances in high-throughput sequencing technologies; however, once the defect is known, researchers face the challenge of deciphering the underlying disease mechanism. Here we characterize large biallelic deletions in the region encoding the ATAD3C, ATAD3B and ATAD3A genes. Although high homology complicates genomic analysis of the ATAD3 defects, they can be identified by targeted analysis of standard single nucleotide polymorphism array and whole exome sequencing data. We report deletions that generate chimeric ATAD3B/ATAD3A fusion genes in individuals from four unrelated families with fatal congenital pontocerebellar hypoplasia, whereas a case with genomic rearrangements affecting the ATAD3C/ATAD3B genes on one allele and ATAD3B/ATAD3A genes on the other displays later-onset encephalopathy with cerebellar atrophy, ataxia and dystonia. Fibroblasts from affected individuals display mitochondrial DNA abnormalities, associated with multiple indicators of altered cholesterol metabolism. Moreover, drug-induced perturbations of cholesterol homeostasis cause mitochondrial DNA disorganization in control cells, while mitochondrial DNA aggregation in the genetic cholesterol trafficking disorder Niemann-Pick type C disease further corroborates the interdependence of mitochondrial DNA organization and cholesterol. These data demonstrate the integration of mitochondria in cellular cholesterol homeostasis, in which ATAD3 plays a critical role. The dual problem of perturbed cholesterol metabolism and mitochondrial dysfunction could be widespread in neurological and neurodegenerative diseases
    corecore