17 research outputs found

    The biogeochemical cycle of dissolved aluminium in the Atlantic Ocean

    Get PDF
    The work presented in this thesis focuses on the biogeochemical cycle of dissolved aluminium in surface waters and the water column of the Atlantic Ocean

    Controls on redox-sensitive trace metals in the Mauritanian oxygen minimum zone

    Get PDF
    The availability of the micronutrient iron (Fe) in surface waters determines primary production, N2 fixation, and microbial community structure in large parts of the world's ocean, and thus it plays an important role in ocean carbon and nitrogen cycles. Eastern boundary upwelling systems and the connected oxygen minimum zones (OMZs) are typically associated with elevated concentrations of redox-sensitive trace metals (e.g., Fe, manganese (Mn), and cobalt (Co)), with shelf sediments typically forming a key source. Over the last 5 decades, an expansion and intensification of OMZs has been observed and this trend is likely to proceed. However, it is unclear how trace-metal (TM) distributions and transport are influenced by decreasing oxygen (O2) concentrations. Here we present dissolved (d; 0.2 µm) TM data collected at seven stations along a 50 km transect in the Mauritanian shelf region. We observed enhanced concentrations of Fe, Co, and Mn corresponding with low O2 concentrations (<50 µmol kg−1), which were decoupled from major nutrients and nutrient-like and scavenged TMs (cadmium (Cd), lead (Pb), nickel (Ni), and copper (Cu)). Additionally, data from repeated station occupations indicated a direct link between dissolved and leachable particulate Fe, Co, Mn, and O2. An observed dFe (dissolved iron) decrease from 10 to 5 nmol L−1 coincided with an O2 increase from 30 to 50 µmol kg−1 and with a concomitant decrease in turbidity. The changes in Fe (Co and Mn) were likely driven by variations in their release from sediment pore water, facilitated by lower O2 concentrations and longer residence time of the water mass on the shelf. Variations in organic matter remineralization and lithogenic inputs (atmospheric deposition or sediment resuspension; assessed using Al as indicator for lithogenic inputs) only played a minor role in redox-sensitive TM variability. Vertical dFe fluxes from O2-depleted subsurface-to-surface waters (0.08–13.5 µmol m−2 d−1) driven by turbulent mixing and vertical advection were an order of magnitude larger than atmospheric deposition fluxes (0.63–1.43 µmol m−2 d−1; estimated using dAl inventories in the surface mixed layer) in the continental slope and shelf region. Benthic fluxes are therefore the dominant dFe supply to surface waters on the continental margins of the Mauritanian upwelling region. Overall, our results indicated that the projected future decrease in O2 concentrations in OMZs may result in increases in Fe, Mn, and Co concentrations

    A First Global Oceanic Compilation of Observational Dissolved Aluminum Data With Regional Statistical Data Treatment

    Get PDF
    Large national and international observational efforts over recent decades have provided extensive and invaluable datasets of a range of ocean variables. Compiled large datasets, structured, or unstructured, are a powerful tool that allow scientists to access and synthesize data collected over large spatial and temporal scales. The data treatment approaches for any element in the ocean could lead to new global perspectives of their distribution patterns and to a better understanding of large-scale oceanic processes and their impact on other biogeochemical cycles, which may not be evident otherwise. Ocean chemistry Big Data analysis may not just be limited to distribution patterns, but may be used to assess how sampling efforts and analytical methodologies can be improved. Furthermore, a systematic global scale assessment of data is important to evaluate the gaps in knowledge and to provide avenues for future research. In this context, here we provide an extensive compilation of oceanic aluminum (Al) concentration data from global ocean basins, including data available in the GEOTRACES Intermediate Data product (Schlitzer et al., 2018), but also thus far unpublished data

    Regulation of the phytoplankton heme b iron pool during the North Atlantic spring bloom

    Get PDF
    CITATION: Louropoulou, E., et al. 2019. Regulation of the phytoplankton heme b iron pool during the North Atlantic spring bloom. Frontiers in Microbiology, 10:1566, doi:10.3389/fmicb.2019.01566.The original publication is available at https://www.frontiersin.orgHeme b is an iron-containing co-factor in hemoproteins. Heme b concentrations are low (0.7 μm) from the North Atlantic Ocean (GEOVIDE cruise – GEOTRACES section GA01), which spanned several biogeochemical regimes. We examined the relationship between heme b abundance and the microbial community composition, and its utility for mapping iron limited phytoplankton. Heme b concentrations ranged from 0.16 to 5.1 pmol L⁻² (median = 2.0 pmol L⁻², n = 62) in the surface mixed layer (SML) along the cruise track, driven mainly by variability in biomass. However, in the Irminger Basin, the lowest heme b levels (SML: median = 0.53 pmol L⁻², n = 12) were observed, whilst the biomass was highest (particulate organic carbon, median = 14.2 μmol L⁻², n = 25; chlorophyll a: median = 2.0 nmol L⁻², n = 23) pointing to regulatory mechanisms of the heme b pool for growth conservation. Dissolved iron (DFe) was not depleted (SML: median = 0.38 nmol L⁻², n = 11) in the Irminger Basin, but large diatoms (Rhizosolenia sp.) dominated. Hence, heme b depletion and regulation is likely to occur during bloom progression when phytoplankton class-dependent absolute iron requirements exceed the available ambient concentration of DFe. Furthermore, high heme b concentrations found in the Iceland Basin and Labrador Sea (median = 3.4 pmol L⁻², n = 20), despite having similar DFe concentrations to the Irminger Basin, were attributed to an earlier growth phase of the extant phytoplankton populations. Thus, heme b provides a snapshot of the cellular activity in situ and could both be used as indicator of iron limitation and contribute to understanding phytoplankton adaptation mechanisms to changing iron supplies.https://www.frontiersin.org/articles/10.3389/fmicb.2019.01566/fullPublisher's versio

    Multidecadal accumulation of anthropogenic and remineralized dissolved inorganic carbon along the Extended Ellett Line in the northeast Atlantic Ocean

    Get PDF
    Marine carbonate chemistry measurements have been carried out annually since 2009 during UK research cruises along the Extended Ellett Line (EEL), a hydrographic transect in the northeast Atlantic Ocean. The EEL intersects several water masses that are key to the global thermohaline circulation, and therefore the cruises sample a region in which it is critical to monitor secular physical and biogeochemical changes. We have combined results from these EEL cruises with existing quality-controlled observational data syntheses to produce a hydrographic time series for the EEL from 1981 to 2013. This reveals multidecadal increases in dissolved inorganic carbon (DIC) throughout the water column, with a near-surface maximum rate of 1.80 ± 0.45 µmol kg−1 yr−1. Anthropogenic CO2 accumulation was assessed, using simultaneous changes in apparent oxygen utilization (AOU) and total alkalinity (TA) as proxies for the biogeochemical processes that influence DIC. The stable carbon isotope composition of DIC (δ13CDIC) was also determined and used as an independent test of our method. We calculated a volume-integrated anthropogenic CO2 accumulation rate of 2.8 ± 0.4 mg C m−3 yr−1 along the EEL, which is about double the global mean. The anthropogenic CO2 component accounts for only 31 ± 6% of the total DIC increase. The remainder is derived from increased organic matter remineralization, which we attribute to the lateral redistribution of water masses that accompanies subpolar gyre contraction. Output from a general circulation ecosystem model demonstrates that spatiotemporal heterogeneity in the observations has not significantly biased our multidecadal rate of change calculations and indicates that the EEL observations have been tracking distal changes in the surrounding North Atlantic and Nordic Seas

    Particulate Trace Metal Sources, Cycling, and Distributions on the Southwest African Shelf

    Get PDF
    We present labile (L-pTM) and refractory (R-pTM) particulate trace metal distributions of Fe, Mn, Al, Ti, Co, Zn, Cd, Ni, Pb, Cu, and P for a transect along the southwest African shelf and an off-shore section at 3°S of the GEOTRACES GA08 section cruise. Particle sources and biogeochemical cycling processes are inferred using particle-type proxies and elemental ratios. Enhanced concentrations of bio-essential L-pTMs (Zn, Cu, Ni, Cd, Co, and P) were observed in the Benguela upwelling region, attributed to enhanced primary production. Bio-essential pTM stoichiometric ratios (normalized to pP) were consistent with phytoplankton biomass across the transect, except for Fe and Mn, which included adsorbed and labile oxide phases. Low pP lability (∼41%) suggests a potential refractory biogenic source on the Benguela shelf. Variable labilities observed between stations along the transect indicated potentially different biogenic pP labilities among different plankton groups. Benthic resuspension was prevalent in (near-)bottom waters along the transect and formed an important source of Fe and Mn oxides. Lithogenic particles along the entire shelf were Mn deficient and particles on the Benguela shelf were enriched in Fe, consistent with regional sediment compositions. Enhanced available-Fe (dissolved + labile particulate Fe) concentrations (up to 39.6 nM) were observed in oxygen-deficient (near-)bottom waters of the Benguela shelf coinciding with low L-pMn. This was attributed to the faster oxidation kinetics of Fe, allowing Fe-oxide precipitation and retention on the shelf, while Mn oxidation was slower. Enhanced L-pFe in the Congo River plume, which comprised as much as 93% of the available-Fe pool, was attributed to increased scavenging and formation of Fe oxides. Increased scavenging of other particle-reactive trace metals (TMs) (Mn, Al, and Pb) was also apparent in Congo-influenced waters. However, particles did not play a significant role in transporting TMs off-shelf within Congo plume waters. Key Points: • Different oxidation kinetics lead to decoupled Fe and Mn oxide redox cycling within oxygen-depleted waters on the Benguela Shelf • Lower lability of particulate phosphorus (∼41%) indicate potential refractory biogenic source on Benguela shelf • Nepheloid particles formed important sources of Fe and Mn oxides that adsorb trace metals (TMs), and serve as potential TM sources from shelf to open ocea

    Inputs and processes affecting the distribution of particulate iron in the North Atlantic along the GEOVIDE (GEOTRACES GA01) section

    Get PDF
    The GEOVIDE cruise (May–June 2014, R/V Pourquoi Pas?) aimed to provide a better understanding on trace metal biogeochemical cycles in the North Atlantic. As particles play a key role in the global biogeochemical cycle of trace elements in the ocean, we discuss the distribution of particulate iron (PFe), in light of particulate aluminium (PAl), manganese (PMn) and phosphorus (PP) distributions. Overall, 32 full vertical profiles were collected for trace metal analyses, representing more than 500 samples. This resolution provides a solid basis for assessing concentration distributions, elemental ratios, size-fractionation, or adsorptive scavenging processes in key areas of the thermohaline circulation. Total particulate iron (PFe) concentrations ranged from as low as 9 pmol L−1 in surface Labrador Sea waters to 304 nmol L−1 near the Iberian margin, while median PFe concentrations of 1.15 nmol L−1 were measured over the sub-euphotic ocean interior. At most stations over the Western, the relative concentrations of total PFe and aluminium (PAl) showed the near-ubiquitous influence of crustal particles in the water column. Overall, the lithogenic component explained more than 87 % of PFe variance along the section. Within the Irminger and Labrador basins, the formation of biogenic particles led to an increase of the PFe / PAl ratio (up to 0.7 mol mol−1) compared to the continental crust ratio (0.21 mol mol−1), Margins provide important quantities of particulate trace elements (up to 10 nmol L−1 of PFe) to the open ocean, and in the case of the Iberian margin, advection of PFe was visible more than 250 km away from the margin. Additionally, several benthic nepheloid layers spreading over 200m above the seafloor were encountered along the transect, especially in the Icelandic, Irminger and Labrador basins, delivering particles with high PFe content, up to 89 nmol L−1 of PFe. Finally, remineralisation processes are also discussed, and showed different patterns among basins and elements

    Atmospheric deposition fluxes over the Atlantic Ocean: A GEOTRACES case study

    No full text
    Atmospheric deposition is an important source of micronutrients to the ocean, but atmospheric deposition fluxes remain poorly constrained in most ocean regions due to the limited number of field observations of wet and dry atmospheric inputs. Here we present the distribution of dissolved aluminium (dAl), as a tracer of atmospheric inputs, in surface waters of the Atlantic Ocean along GEOTRACES sections GA01, GA06, GA08, and GA10. We used the surface mixed-layer concentrations of dAl to calculate atmospheric deposition fluxes using a simple steady state model. We have optimized the Al fractional aerosol solubility, the dAl residence time within the surface mixed layer and the depth of th e surface mixed layer for each separate cruise to calculate the atmosphericdeposition fluxes. We calculated the lowest deposition fluxes of 0:150:1 and 0:27 0:13 gm2 yr1 for the South and North Atlantic Ocean (&gt; 40 S and &gt; 40 N) respectively, and the highest fluxes of 1.8 and 3.09 gm2 yr1 for the south-east Atlantic and tropical Atlantic Ocean, respectively. Overall, our estimations are comparable to atmospheric dust deposition model estimates and reported field-based atmospheric deposition estimates. We note that our estimates diverge from atmospheric dust deposition model flux estimates in regions influenced by riverine Al inputs and in upwelling regions. As dAl is a key trace element in the GEOTRACES programme, the approach presented in this study allows calculations of atmospheric deposition fluxes at high spatial resolution for remote ocean regions.</p
    corecore