46 research outputs found

    A new challenge for meteorological measurements: The meteoMet project-Metrology for meteorology

    Get PDF
    Climate change and its consequences require immediate actions in order to safeguard the environment and economy in Europe and in the rest of world. Aiming to enhance data reliability and reduce uncertainties in climate observations, a joint research project called MeteoMet-Metrology for Meteorology started in October 2011 coordinated by the Italian Istituto Nazionale di Ricerca Metrologica (INRiM). The project is focused on the traceability of measurements involved in climate change: surface and upper air measurements of temperature, pressure, humidity, wind speed and direction, solar irradiance and reciprocal influences between measurands. This project will provide the first definition at the European level of validated climate parameters with associated uncertainty budgets and novel criteria for interpretation of historical data series. The big challenge is the propagation of a metrological measurement perspective to meteorological observations. When such an approach will be adopted the requirement of reliable data and robust datasets over wide scales and long terms could be better met. © 2013 AIP Publishing LLC

    Oxygen and silica flux from 9 multicorer profiles

    No full text
    Pore water profiles from 24 stations in the South Atlantic (located in the Guinea, Angola, Cape, Guyana, and Argentine basins) show good correlations of oxygen and silicon, suggesting microbially mediated dissolution of biogenic silica. We used simple analytical transport and reaction models to show the tight coupling of the reconstructed process kinetics of aerobic respiration and silicon regeneration. A generic transport and reaction model successfully reproduced the majority of Si pore water profiles from aerobic respiration rates, confirming that the dissolution of biogenic silica (BSi) occurs proportionally to O2 consumption. Possibly limited to well-oxygenated sediments poor in BSi, benthic Si fluxes can be inferred from O2 uptake with satisfactory accuracy. Compared to aerobic respiration kinetics, the solubility of BSi emerged as a less influential parameter for silicon regeneration. Understanding the role of bacteria for silicon regeneration requires further investigations, some of which are outlined. The proposed aerobic respiration control of benthic silicon cycling is suitable for benthic–pelagic models. The empirical relation of BSi dissolution to aerobic respiration can be used for regionalization assessments and estimates of the silicon budget to increase the understanding of global primary and export production patterns

    Stem cells: A view from the roots

    No full text
    In both plants and animals, regeneration requires the activation of stem cells. This is possibly related to the origin and requirements of multicellularity. Although long diverged from a common ancestry, plant and animal models such as Arabidopsis, Drosophila and mouse share considerable similarities in stem cell regulation. This includes stem cell niche organisation, epigenetic modification of DNA and histones, and the role of small RNA machinery in differentiation and pluripotency states. Dysregulation of any of these can lead to premature ageing, patterning and specification defects, as well as cancers. Moreover, emerging basal animal and plant systems are beginning to provide important clues concerning the diversity and evolutionary history of stem cell regulatory mechanisms in eukaryotes. This review provides a comparative framework, highlighting both the commonalities and differences among groups, which should promote the intelligent design of artificial stem cell systems, and thereby fuel the field of biomaterials science.</p

    Microbial mediation of benthic biogenic silica dissolution

    Get PDF
    Pore water profiles from 24 stations in the South Atlantic (located in the Guinea, Angola, Cape, Guyana, and Argentine basins) show good correlations of oxygen and silicon, suggesting microbially mediated dissolution of biogenic silica. We used simple analytical transport and reaction models to show the tight coupling of the reconstructed process kinetics of aerobic respiration and silicon regeneration. A generic transport and reaction model successfully reproduced the majority of Si pore water profiles from aerobic respiration rates, confirming that the dissolution of biogenic silica (BSi) occurs proportionally to O 2 consumption. Possibly limited to well-oxygenated sediments poor in BSi, benthic Si fluxes can be inferred from O 2 uptake with satisfactory accuracy. Compared to aerobic respiration kinetics, the solubility of BSi emerged as a less influential parameter for silicon regeneration. Understanding the role of bacteria for silicon regeneration requires further investigations, some of which are outlined. The proposed aerobic respiration control of benthic silicon cycling is suitable for benthic–pelagic models. The empirical relation of BSi dissolution to aerobic respiration can be used for regionalization assessments and estimates of the silicon budget to increase the understanding of global primary and export production patterns

    Data challenges and opportunities for environmental management of North Sea oil and gas decommissioning in an era of blue growth

    Get PDF
    Maritime industries routinely collect critical environmental data needed for sustainable management of marine ecosystems, supporting both the blue economy and future growth. Collating this information would provide a valuable resource for all stakeholders. For the North Sea, the oil and gas industry has been a dominant presence for over 50 years that has contributed to a wealth of knowledge about the environment. As the industry begins to decommission its offshore structures, this information will be critical for avoiding duplication of effort in data collection and ensuring best environmental management of offshore activities. This paper summarises the outcomes of a Blue Growth Data Challenge Workshop held in 2017 with participants from: the oil and gas industry; the key UK regulatory and management bodies for oil and gas decommissioning; open access data facilitators; and academic and research institutes. Here, environmental data collection and archiving by oil and gas operators in the North Sea are described, alongside how this compares to other offshore industries; what the barriers and opportunities surrounding environmental data sharing are; and how wider data sharing from offshore industries could be achieved. Five primary barriers to data sharing were identified: 1) Incentives, 2) Risk Perception, 3) Working Cultures, 4) Financial Models, and 5) Data Ownership. Active and transparent communication and collaboration between stakeholders including industry, regulatory bodies, data portals andacademic institutions will be key to unlocking the data that will be critical to informing responsible decommissioning decisions for offshore oil and gas structures in the North Sea
    corecore