63 research outputs found

    Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    Full text link
    Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will pass through a neutron target. In order to efficiently use the rare nuclides as well as to enhance the luminosity, the exotic nuclides can be stored in an ion storage ring. The neutron target can be the core of a research reactor, where one of the central fuel elements is replaced by the evacuated beam pipe of the storage ring. Using particle detectors and Schottky spectroscopy, most of the important neutron-induced reactions, such as (n,γ\gamma), (n,p), (n,α\alpha), (n,2n), or (n,f), could be investigated.Comment: 5 pages, 7 figures, Invited Talk given at the Fifteenth International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15), Dresden, Germany, 201

    Nucleosynthesis simulations for the production of the p-nuclei 92Mo and 94Mo in a Supernova type II model

    Get PDF
    We present a nucleosynthesis sensitivity study for the γ-process in a Supernova type II model within the NuGrid research platform. The simulations aimed at identifying the relevant local production and destruction rates for the p-nuclei of molybdenum and at determining the sensitivity of the final abundances to these rates. We show that local destruction rates strongly determine the abundance of 92 Mo and 94 Mo, and quantify the impact

    First Measurement of the 96^{96}Ru(p,γ\gamma)97^{97}Rh Cross Section for the p-Process with a Storage Ring

    Get PDF
    This work presents a direct measurement of the 96^{96}Ru(p,γp, \gamma)97^{97}Rh cross section via a novel technique using a storage ring, which opens opportunities for reaction measurements on unstable nuclei. A proof-of-principle experiment was performed at the storage ring ESR at GSI in Darmstadt, where circulating 96^{96}Ru ions interacted repeatedly with a hydrogen target. The 96^{96}Ru(p,γp, \gamma)97^{97}Rh cross section between 9 and 11 MeV has been determined using two independent normalization methods. As key ingredients in Hauser-Feshbach calculations, the γ\gamma-ray strength function as well as the level density model can be pinned down with the measured (p,γp, \gamma) cross section. Furthermore, the proton optical potential can be optimized after the uncertainties from the γ\gamma-ray strength function and the level density have been removed. As a result, a constrained 96^{96}Ru(p,γp, \gamma)97^{97}Rh reaction rate over a wide temperature range is recommended for pp-process network calculations.Comment: 10 pages, 7 figs, Accepted for publication at PR

    Towards an Intrinsic Doppler Correction for X-ray Spectroscopy of Stored Ions at CRYRING@ESR

    Get PDF
    We report on a new experimental approach for the Doppler correction of X-rays emitted by heavy ions, using novel metallic magnetic calorimeter detectors which uniquely combine a high spectral resolution with a broad bandwidth acceptance. The measurement was carried out at the electron cooler of CRYRING@ESR at GSI, Darmstadt, Germany. The X-ray emission associated with the radiative recombination of cooler electrons and stored hydrogen-like uranium ions was investigated using two novel microcalorimeter detectors positioned under 0∘ and 180∘ with respect to the ion beam axis. This new experimental setup allowed the investigation of the region of the N, M → L transitions in helium-like uranium with a spectral resolution unmatched by previous studies using conventional semiconductor X-ray detectors. When assuming that the rest-frame energy of at least a few of the recorded transitions is well-known from theory or experiments, a precise measurement of the Doppler shifted line positions in the laboratory system can be used to determine the ion beam velocity using only spectral information. The spectral resolution achievable with microcalorimeter detectors should, for the first time, allow intrinsic Doppler correction to be performed for the precision X-ray spectroscopy of stored heavy ions. A comparison with data from a previous experiment at the ESR electron cooler, as well as the conventional method of conducting Doppler correction using electron cooler parameters, will be discussed

    Coulomb dissociation of O-16 into He-4 and C-12

    Get PDF
    We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4

    Coulomb dissociation of 16O into 4He and 12C

    Get PDF
    We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(a,?)16O fusion reaction and to reach lower center-ofmass energies than measured so far. The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-To-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision

    Experimental studies of optical potentials for p-process nucleosynthesis

    No full text
    The 35 neutron deficient nuclides known as the p nuclei are sysnthesized mainly in the so-called γ process. Taking place in explosive supernova events, the existing seed distribution from prior nucleosynthesis is altered by photodisintegration reactions of the types (γ,n), (γ,p) and (γ,α). The bulk of reaction rates needed in network calculations of the γ process are predicted by the Hauser-Feshbach Model. When using this theory, the largest uncertainties stem from the interaction between charged particles and nuclei described by optical model potentials. An improvement of these potentials can be achieved by comparison to measured cross section data. However, because of the low energies of interest for nuclear astrophysics and the resulting low cross sections, suitable data are scarce. This thesis extends the corresponding database by measurement of the reactions 165Ho(α, n), 166Er(α, n), 169Tm(p,n) and 175Lu(p,n) using the activation technique. While not particularly important for the γ process, the selected (α,n) and (p,n) reactions exhibit nearly exclusive sensitivity to the α- or proton-nucleus potential, respectively. Therefore, the results presented here are well suited to test and improve the predictive power of currently available parameterizations of these potentialsDie 35 als p Kerne bezeichneten, neutronenarmen Nuklide werden hauptsächlich im sogenannten γ Prozess erzeugt. Hierbei wird die aus vorherigen Nukleosyntheseprozessen stammende Saatverteilung im Inneren einer Supernova durch Photodesintegration vom Typ (γ,n), (γ,p) und (γ, α) modifiziert. Die Mehrheit der Reaktionsraten, die in Netzwerkrechungen des γ Prozesses benötigt werden, beruhen auf der Vorhersage des Hauser-Feshbach Modells. Die größten Unsicherheiten bei der Verwendung dieser Theorie resultieren aus der nicht hinreichend genau bekannten Wechselwirkung zwischen geladenen Teilchen und Kernen. Diese wird durch optische Potenziale beschrieben. Eine Verbesserung dieser Potenziale kann durch Vergleich mit gemessenen Wirkungsquerschnitten erfolgen. Aufgrund der niedrigen relevanten Energien in der nuklearen Astrophysik und den daraus resultierenden kleinenWirkungsquerschnitten, sind dafür geeignete Daten rar. Die vorliegende Arbeit verbessert die angesprochene Datenlage durch Messungen der Reaktionen 165Ho(α, n), 166Er(α,n), 169Tm(p,n) und 175Lu(p,n) mit Hilfe der Aktivierungsmethode. Obwohl nicht direkt maßgeblich für den γ Prozess, zeigen die ausgewählten (α, n) und (p,n) Reaktionen nahezu exklusive Sensitivität auf das α- bzw. Protonen-Kern Potenzial und sind somit sehr gut geeignet, die Vorhersagekraft aktueller Potenzialparametrisierungen zu testen und zu verbessern
    corecore