147 research outputs found

    Targetable Mechanical Properties by Switching between Self-Sorting and Co-assembly with In Situ Formed Tripodal Ketoenamine Supramolecular Hydrogels

    Get PDF
    A new family of supramolecular hydrogelators are introduced in which self-sorting and co-assembly can be utilised in the tuneability of the mechanical properties of the materials, a property closely tied to the nanostructure of the gel network. The in situ reactivity of the components of the gelators allows for system chemistry concepts to be applied to the formation of the gels and shows that molecular properties, and not necessarily the chemical identity, determines some gel properties in these family of gels

    Deducing transport properties of mobile vacancies from perovskite solar cell characteristics

    Get PDF
    The absorber layers in perovskite solar cells possess a high concentration of mobile ion vacancies. These vacancies undertake thermally activated hops between neighboring lattice sites. The mobile vacancy concentration N 0 is much higher and the activation energy E A for ion hops is much lower than is seen in most other semiconductors due to the inherent softness of perovskite materials. The timescale at which the internal electric field changes due to ion motion is determined by the vacancy diffusion coefficient D v and is similar to the timescale on which the external bias changes by a significant fraction of the open-circuit voltage at typical scan rates. Therefore, hysteresis is often observed in which the shape of the current-voltage, J-V, characteristic depends on the direction of the voltage sweep. There is also evidence that this defect migration plays a role in degradation. By employing a charge transport model of coupled ion-electron conduction in a perovskite solar cell, we show that E A for the ion species responsible for hysteresis can be obtained directly from measurements of the temperature variation of the scan-rate dependence of the short-circuit current and of the hysteresis factor H. This argument is validated by comparing E A deduced from measured J-V curves for four solar cell structures with density functional theory calculations. In two of these structures, the perovskite is MAPbI 3, where MA is methylammonium, CH 3 NH 3; the hole transport layer (HTL) is spiro (spiro-OMeTAD, 2,2 ′,7,7 ′- tetrakis[N,N-di(4-methoxyphenyl) amino]-9,9 ′-spirobifluorene) and the electron transport layer (ETL) is TiO 2 or SnO 2. For the third and fourth structures, the perovskite layer is FAPbI 3, where FA is formamidinium, HC (NH 2) 2, or MAPbBr 3, and in both cases, the HTL is spiro and the ETL is SnO 2. For all four structures, the hole and electron extracting electrodes are Au and fluorine doped tin oxide, respectively. We also use our model to predict how the scan rate dependence of the power conversion efficiency varies with E A, N 0, and parameters determining free charge recombination. </p

    Response to comment on 'Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity'

    Get PDF
    Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species

    A reappraisal of explosive–effusive silicic eruption dynamics: syn-eruptive assembly of lava from the products of cryptic fragmentation

    Get PDF
    Silicic volcanic eruptions range in style from gently effusive to highly explosive, and may switch style unpredictably during a single eruption. Direct observations of subaerial rhyolitic eruptions (Chaiten 2008, Cordón Caulle 2011–2012, Chile) challenged long-standing paradigms of explosive and effusive eruptive styles and led to the formulation of new models of hybrid activity. However, the processes that govern such hybrid explosive–effusive activity remain poorly understood. Here, we bring together observations of the well-studied 2011–2012 Cordón Caulle eruption with new textural and petrologic data on erupted products, and video and still imagery of the eruption. We infer that all of the activity – explosive, effusive, and hybrid – was fed by explosive fragmentation at depth, and that effusive behaviour arose from sticking and sintering, in the shallow vent region, of the clastic products of deeper, cryptic fragmentation. We use a scaling approach to determine that there is sufficient time available, during emplacement, for diffusive pyroclast degassing and sintering to produce a degassed plug that occludes the shallow conduit, feeding clastogenic, apparently effusive, lava-like deposits. Based on evidence from Cordón Caulle, and from other similar eruptions, we further argue that hybrid explosive–effusive activity is driven by episodic gas-fracking of the occluding lava plug, fed by the underlying pressurized ash- and pyroclast-laden region. The presence of a pressurized pocket of ash-laden gas within the conduit provides a mechanism for generation of harmonic tremor, and for syn-eruptive laccolith intrusion, both of which were features of the Cordón Caulle eruption. We conclude that the cryptic fragmentation models is more consistent with available evidence than the prevailing model for effusion of silicic lava that assume coherent non-fragmental rise of magma from depth to the surface without wholesale explosive fragmentation

    Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article

    Correlation of Group C Meningococcal Conjugate Vaccine Response with B- and T-Lymphocyte Activity

    Get PDF
    Despite the success of conjugate vaccination against meningococcal group C (MenC) disease, post-vaccination, some individuals still exhibit rapid waning of initially protective bactericidal antibody levels. The mechanism of this relative loss of humoral protection remains undetermined. In this report we have investigated the relationship between T- and B-cell activation and co-stimulation and the loss of protective antibody titers. We have found that healthy volunteers who lose protective MenC antibody levels one year after receipt of glycoconjugate vaccine exhibit no detectable cellular defect in polyclonal B- or T-cell activation, proliferation or the B-memory pool. This suggests that the processes underlying the more rapid loss of antibody levels are independent of defects in either initial T- or B-cell activation

    Utilising copper screen-printed electrodes (CuSPE) for the electroanalytical sensing of sulfide

    Get PDF
    © The Royal Society of Chemistry 2016.A mediatorless sulfide electrochemical sensing platform utilising a novel nanocopper-oxide screen-printed electrodes (CuSPE) is reported for the first time. The state-of-the-art screen-printed electrochemical sensors demonstrate their capability to quantify sulfide within both the presence and absence of an array of interferents with good levels of sensitivity and repeatability. The direct sensing (using linear sweep voltammetry) of sulfide utilising the CuSPEs provides a mediatorless approach for the detection of sulfide, yielding useful analytical signatures that can be successfully quantified. The proposed novel protocol using the CuSPEs is successfully applied to the sensing of sulfide within drinking water exhibiting a high level of recovery

    Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

    Get PDF
    Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity
    corecore