154 research outputs found

    Does global progress on sanitation really lag behind water? An analysis of global progress on community- and household-level access to safe water and sanitation.

    Get PDF
    Safe drinking water and sanitation are important determinants of human health and wellbeing and have recently been declared human rights by the international community. Increased access to both were included in the Millennium Development Goals under a single dedicated target for 2015. This target was reached in 2010 for water but sanitation will fall short; however, there is an important difference in the benchmarks used for assessing global access. For drinking water the benchmark is community-level access whilst for sanitation it is household-level access, so a pit latrine shared between households does not count toward the Millennium Development Goal (MDG) target. We estimated global progress for water and sanitation under two scenarios: with equivalent household- and community-level benchmarks. Our results demonstrate that the "sanitation deficit" is apparent only when household-level sanitation access is contrasted with community-level water access. When equivalent benchmarks are used for water and sanitation, the global deficit is as great for water as it is for sanitation, and sanitation progress in the MDG-period (1990-2015) outstrips that in water. As both drinking water and sanitation access yield greater benefits at the household-level than at the community-level, we conclude that any post-2015 goals should consider a household-level benchmark for both

    Protocol for establishing a core outcome set for evaluation in studies of pulmonary exacerbations in people with cystic fibrosis

    Get PDF
    Introduction: Pulmonary exacerbations are associated with increased morbidity and mortality in people with cystic fibrosis (CF). There is no consensus about which outcomes should be evaluated in studies of pulmonary exacerbations or how these outcomes should be measured. Outcomes of importance to people with lived experience of the disease are frequently omitted or inconsistently reported in studies, which limits the value of such studies for informing practice and policy. To better standardise outcome reporting and measurement, we aim to develop a core outcome set for studies of pulmonary exacerbations in people with CF (COS-PEX) and consensus recommendations for measurement of core outcomes. Methods and analysis: Preliminary work for development of COS-PEX has been reported, including (1) systematic reviews of outcomes and methods for measurement reported in existing studies of pulmonary exacerbations; (2) workshops with people affected by CF within Australia; and (3) a Bayesian knowledge expert elicitation workshop with health professionals to ascertain outcomes of importance. Here we describe a protocol for the additional stages required for COS-PEX development and consensus methods for measurement of core outcomes. These include (1) an international two-round online Delphi survey and (2) consensus workshops to review and endorse the proposed COS-PEX and to agree with methods for measurement. Ethics and dissemination: National mutual ethics scheme approval has been provided by the Child and Adolescent Health Service Human Research Ethics Committee (RGS 4926). Results will be disseminated via consumer and research networks and peer-reviewed publications. This study is registered with the Core Outcome Measures in Effectiveness Trials database

    Addressing global ruminant agricultural challenges through understanding the rumen microbiome::Past, present and future

    Get PDF
    The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in “omic” data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    The Cyclic AMP Cascade Is Altered in the Fragile X Nervous System

    Get PDF
    Fragile X syndrome (FX), the most common heritable cause of mental retardation and autism, is a developmental disorder characterized by physical, cognitive, and behavioral deficits. FX results from a trinucleotide expansion mutation in the fmr1 gene that reduces levels of fragile X mental retardation protein (FMRP). Although research efforts have focused on FMRP's impact on mGluR signaling, how the loss of FMRP leads to the individual symptoms of FX is not known. Previous studies on human FX blood cells revealed alterations in the cyclic adenosine 3′, 5′-monophosphate (cAMP) cascade. We tested the hypothesis that cAMP signaling is altered in the FX nervous system using three different model systems. Induced levels of cAMP in platelets and in brains of fmr1 knockout mice are substantially reduced. Cyclic AMP induction is also significantly reduced in human FX neural cells. Furthermore, cAMP production is decreased in the heads of FX Drosophila and this defect can be rescued by reintroduction of the dfmr gene. Our results indicate that a robust defect in cAMP production in FX is conserved across species and suggest that cAMP metabolism may serve as a useful biomarker in the human disease population. Reduced cAMP induction has implications for the underlying causes of FX and autism spectrum disorders. Pharmacological agents known to modulate the cAMP cascade may be therapeutic in FX patients and can be tested in these models, thus supplementing current efforts centered on mGluR signaling

    A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research

    Get PDF
    The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science

    The role of wingbeat frequency and amplitude in flight power

    Get PDF
    Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group
    corecore