165 research outputs found

    Probing Dark Matter

    Get PDF
    Recent novel observations have probed the baryonic fraction of the galactic dark matter that has eluded astronomers for decades. Late in 1993, the MACHO and EROS collaborations announced in this journal the detection of transient and achromatic brightenings of a handful of stars in the Large Magellanic Cloud that are best interpreted as gravitational microlensing by low-mass foreground objects (MACHOS). This tantalized astronomers, for it implied that the population of cool, compact objects these lenses represent could be the elusive dark matter of our galactic halo. A year later in 1994, Sackett et al. reported the discovery of a red halo in the galaxy NGC 5907 that seems to follow the inferred radial distribution of its dark matter. This suggested that dwarf stars could constitute its missing component. Since NGC 5907 is similar to the Milky Way in type and radius, some surmised that the solution of the galactic dark matter problem was an abundance of ordinary low-mass stars. Now Bahcall et al., using the Wide-Field Camera of the recently repaired Hubble Space Telescope, have dashed this hope.Comment: 3 pages, Plain TeX, no figures, published as a News and Views in Nature 373, 191 (1995

    The contribution of Oxygen-Neon white dwarfs to the MACHO content of the Galactic Halo

    Get PDF
    The interpretation of microlensing results towards the Large Magellanic Cloud (LMC) still remains controversial. White dwarfs have been proposed to explain these results and, hence, to contribute significantly to the mass budget of our Galaxy. However, several constraints on the role played by regular carbon-oxygen white dwarfs exist. Massivewhite dwarfs are thought to be made of a mixture of oxygen and neon. Correspondingly, their cooling rate is larger than those of typical carbon-oxygen white dwarfs and they fade to invisibility in short timescales. Consequently, they constitute a good candidate for explaining the microlensing results. Here, we examine in detail this hypothesis by using the most recent and up-to-date cooling tracks for massive white dwarfs and a Monte Carlo simulator which takes into account the most relevant Galactic inputs. We find that oxygen-neon white dwarfs cannot account for a substantial fraction of the microlensing depth towards the LMC, independently of the adopted initial mass function, although some microlensing events could be due to oxygen--neon white dwarfs. The white dwarf population contributes at most a 5% to the mass of the Galactic halo.Comment: 10 pages, 4 figures. Accepted for publication in Astronomy & Astrophysic

    Use of thermal modeling to assess the tectono-metamorphic history of the Lugo and Sanabria gneiss domes, Northwest Iberia

    Get PDF
    The Lugo and Sanabria domes in Northwest Iberia have well constrained metamorphic and structural histories. Both occur in the Iberian autochthon and resulted from late-Variscan extensional collapse following crustal thickening related to the Variscan collision. The two domes developed beneath large thrust sheets, are cored by sillimanite-orthoclase anatectic gneiss, preserve evidence of a steep thermal gradient (1 oC MPa-1), and exhibit a distinct decrease in metamorphic grade to the east in the direction of nappe movement. Geochronological evidence indicates that the lower crust melted within 30 Ma of initial crustal thickening and that dome formation occurred within 50 Ma. The histories of the two domes are considered as the basis for one-dimensional finite-difference models of thermal response to changes in crustal thickness. Results from thermal models suggest that thickening was limited to the crust, provide a numeric explanation for timing and nature of granite magmatism, and indicate that high-temperature metamorphism and crustal anatexis may result directly from thermal relaxation, eliminating the need for significant mantle thermal contribution. Also, the models show that small differences in thickness of large, wedge-shaped thrust sheets can explain distinct P-T paths experienced by different limbs of the domes

    Can Galactic Observations Be Explained by a Relativistic Gravity Theory?

    Get PDF
    We consider the possibility of an alternative gravity theory explaining the dynamics of galactic systems without dark matter. From very general assumptions about the structure of a relativistic gravity theory we derive a general expression for the metric to order (v/c)2(v/c)^2. This allows us to compare the predictions of the theory with various experimental data: the Newtonian limit, light deflection and retardation, rotation of galaxies and gravitational lensing. Our general conclusion is that the possibility for any gravity theory to explain the behaviour of galaxies without dark matter is rather improbable.Comment: 12p, REVTeX 3.

    White dwarfs with hydrogen-deficient atmospheres and the dark matter content of the Galaxy

    Get PDF
    The nature of the several microlensing events observed by the MACHO team towards the Large Magellanic Cloud (LMC) is still a subject of debate. Low-mass substellar objects and stars with masses larger than ~M_{sun} have been ruled out as major components of a Massive Astrophysical Compact Halo Object (MACHO) Galactic halo, while stars of half a solar mass seem to be viable candidates. Main sequence stars have been already discarded, and there are tight restrictions on the role played by white dwarfs with hydrogen-dominated atmospheres. In this paper we evaluate the contribution to the dark matter content of the Galaxy of white dwarfs with hydrogen-deficient atmospheres. For this purpose we use a Monte Carlo simulator which incorporates up-to-date evolutionary sequences of white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres. We also take into account detailed descriptions of the thick disk and the halo of our Galaxy as well as of a reliable model of the LMC. We find that the contribution of white dwarfs with hydrogen-deficient atmospheres moderately increases the theoretical estimate of the optical depth with respect to the value obtained when only hydrogen-rich white dwarfs are considered. We also find that the contribuiton of the thick disk population of white dwarfs is comparable to the halo contribution. However, the contributions of both the halo and the thick disk white-dwarf populations are still insufficient to explain the number of events observed by the MACHO team. Finally, we find that the contribution to the halo dark matter of the entire population under study is less than 10% at the 95% conficence level.Comment: 12 pages, 5 figures, accepted for publication in A&

    Unlocking the secrets of stellar haloes using combined star counts and surface photometry

    Full text link
    The stellar haloes of galaxies can currently be studied either through observations of resolved halo stars or through surface photometry. Curiously, the two methods appear to give conflicting results, as a number of surface photometry measurements have revealed integrated colours that are too red to be reconciled with the halo properties inferred from the study of resolved stars. Several explanations for this anomaly have been proposed - including dust photoluminescence, extinction of extragalactic background light and a bottom-heavy stellar initial mass function. A decisive test is, however, still lacking. Here, we explain how observations of the halo of a nearby galaxy, involving a combination of both surface photometry and bright star counts, can be used to distinguish between the proposed explanations. We derive the observational requirements for this endeavour and find that star counts in filters VI and surface photometry in filters VIJ appears to be the optimal strategy. Since the required halo star counts are already available for many nearby galaxies, the most challenging part of this test is likely to be the optical surface photometry, which requires several nights of exposure time on a 4-8 m telescope, and the near-IR surface photometry, which is most readily carried out using the upcoming James Webb Space Telescope.Comment: 14 pages, 4 figures; v.2 matches published version (minor changes only

    Study of Constrained Minimal Supersymmetry

    Full text link
    Taking seriously phenomenological indications for supersymmetry, we have made a detailed study of unified minimal SUSY, including effects at the few percent level in a consistent fashion. We report here a general analysis without choosing a particular unification gauge group. We find that the encouraging SUSY unification results of recent years do survive the challenge of a more complete and accurate analysis. Taking into account effects at the 5-10% level leads to several improvements of previous results, and allows us to sharpen our predictions for SUSY in the light of unification. We perform a thorough study of the parameter space. The results form a well-defined basis for comparing the physics potential of different facilities. Very little of the acceptable parameter space has been excluded by LEP or FNAL so far, but a significant fraction can be covered when these accelerators are upgraded. A number of initial applications to the understanding of the SUSY spectrum, detectability of SUSY at LEP II or FNAL, BR(b→sγb\to s\gamma), Width(Z→bbˉZ\to b\bar b), dark matter, etc, are included in a separate section. We formulate an approach to extracting SUSY parameters from data when superpartners are detected. For small tan(beta) or large mtopm_top both MhalfM_half and M0M_0 are entirely bounded from above at O(1 tev) without having to use a fine-tuning constraint.Comment: Michigan preprint UM-TH-93-24, LaTeX, 60 pages without figures. Complete paper with inline figures available by anonymous ftp to williams.physics.lsa.umich.edu in /pub/preprints/UM-TH-93-24.ps.Z (uncompresses to 10MB / 77 pages), or by e-mailing reques
    • 

    corecore