143 research outputs found

    FIRST REPORT ON DINOSAUR TRACKS FROM THE BURRO CAN YON FORMATION, SAN JUAN COUNTY, UTAH, USA – EVIDENCE OF A DIVERSE, HITHERTO UN KNOWN LOWER CRETACEOUS DINOSAUR FAUNA

    Get PDF
    The newly discovered White Mesa tracksite in the Burro Canyon Formation represents a snap shot of a diverse, Lower Cretaceous dinosaur fauna from south-eastern Utah. The tracks were found at a construction site where the sand stone had been bull dozed and broken up. All tracks were found as deep, well-preserved natural casts on the under side of the sand stone slabs. Individual theropod tracks are 19–57 cm in length; one peculiar track shows evidence of a possible pathological swelling in the middle of digit III and an apparently didactyl track is tentatively as signed to a dromaeosaurid. Individual sauropod tracks are found with pes lengths of 36–72 cm, and interestingly, three distinct shapes of manus tracks, ranging from wide banana shaped to rounded and hoof-like. Ornithopods are represented with individual tracks 18–37 cm in length; a single track can possibly be attributed to the thyreophoran ichnogenus Deltapodus. Zircon U-Pb dating places the track-bearing layer in the Barremian, contemporary to the lower Yellow Cat Member of the Cedar Mountain Formation, which has a similar faunal composition based on both tracks and body fossils. This new track-fauna demonstrates the existence of a diverse dinosaurian assemblage in the lower part of the Burro Canyon Formation, which hitherto is not known to yield skeletal remains

    A Large, First-Year, Introductory, Multi-Sectional Biological Concepts of Health Course Designed to Develop Skills and Enhance Deeper Learning

    Get PDF
    Large first-year biology classes, with their heavy emphasis on factual content, contribute to low student engagement and misrepresent the dynamic, interdisciplinary nature of biological science. We sought to redesign a course to deliver fundamental biology curriculum through the study of health, promote skills development, and encourage a deeper level of learning for a large, multi-section first-year class. We describe the Biological Concepts of Health course designed to encourage higher-order learning and teach oral communication and independent learning skills to large numbers of first-year students. We used the Blooming Biology Tool to determine the cognitive skills level assessed in the newly developed course and the courses it replaced. This evidence-based approach demonstrated that our new course design achieved the goal of encouraging a deeper level of cognition, and further, successfully introduced both oral communication and independent learning skills in large first-year classes.  En mettant l’emphase sur un contenu factuel, les grandes classes de biologie de première année contribuent au faible engagement des élèves et donnent une représentation imprécise de la nature dynamique et interdisciplinaire des sciences de la biologie. Afin d’offrir un programme fondamental en biologie par l’étude de la santé, de promouvoir le perfectionnement des compétences et d’encourager un niveau d’apprentissage marqué, nous avons repensé un cours pour une grande classe de première année contenant plusieurs sous-groupes. Nous décrivons le cours « Biological Concepts of Health » conçu pour encourager l’apprentissage supérieur, ainsi que pour enseigner la communication orale et les habiletés d’apprentissage individualisé à un grand nombre d’étudiants de première année. Pour déterminer le niveau d’habiletés cognitives évalué dans ce cours nouvellement conçu et les cours qu’il remplace, nous avons utilisé le « Blooming Biology Tool ». Cette approche éprouvée démontre que ce nouveau cours a atteint son but d’encourager l’approfondissement des connaissances et, par ailleurs, a réussi à introduire la communication orale, de même que les habiletés d’apprentissage individualisé aux grandes classes de première année

    Alpha-Amino-Beta-Carboxy-Muconate-Semialdehyde Decarboxylase Controls Dietary Niacin Requirements for NAD+ Synthesis

    Get PDF
    NAD+ is essential for redox reactions in energy metabolism and necessary for DNA repair and epigenetic modification. Humans require sufficient amounts of dietary niacin (nicotinic acid, nicotinamide, and nicotinamide riboside) for adequate NAD+ synthesis. In contrast, mice easily generate sufficient NAD+ solely from tryptophan through the kynurenine pathway. We show that transgenic mice with inducible expression of human alpha-amino-beta-carboxy-muconate-semialdehyde decarboxylase (ACMSD) become niacin dependent similar to humans when ACMSD expression is high. On niacin-free diets, these acquired niacin dependency (ANDY) mice developed reversible, mild-to-severe NAD+ deficiency, depending on the nutrient composition of the diet. NAD deficiency in mice contributed to behavioral and health changes that are reminiscent of human niacin deficiency. This study shows that ACMSD is a key regulator of mammalian dietary niacin requirements and NAD+ metabolism and that the ANDY mouse represents a versatile platform for investigating pathologies linked to low NAD+ levels in aging and neurodegenerative diseases

    Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice

    Get PDF
    The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth factor-1, insulin or glucose levels are responsible

    The SDSS Quasar Survey: Quasar Luminosity Function from Data Release Three

    Full text link
    We determine the number counts and z=0-5 luminosity function for a well-defined, homogeneous sample of quasars from the Sloan Digital Sky Survey (SDSS). We conservatively define the most uniform statistical sample possible, consisting of 15,343 quasars within an effective area of 1622 deg^2 that was derived from a parent sample of 46,420 spectroscopically confirmed broad-line quasars in the 5282 deg^2 of imaging data from SDSS Data Release Three. The sample extends from i=15 to i=19.1 at z3. The number counts and luminosity function agree well with the results of the 2dF QSO Survey, but the SDSS data probe to much higher redshifts than does the 2dF sample. The number density of luminous quasars peaks between redshifts 2 and 3, although uncertainties in the selection function in this range do not allow us to determine the peak redshift more precisely. Our best fit model has a flatter bright end slope at high redshift than at low redshift. For z<2.4 the data are best fit by a redshift-independent slope of beta = -3.1 (Phi(L) propto L^beta). Above z=2.4 the slope flattens with redshift to beta=-2.37 at z=5. This slope change, which is significant at a >5-sigma level, must be accounted for in models of the evolution of accretion onto supermassive black holes.Comment: 57 pages, 21 figures (9 color); minor changes to reflect the version accepted by AJ; higher resolution version available at ftp://ftp.astro.princeton.edu/gtr/dr3qlf/Feb1306

    Meeting Report: Aging Research and Drug Discovery

    Get PDF
    Aging is the single largest risk factor for most chronic diseases, and thus possesses large socioeconomic interest to continuously aging societies. Consequently, the field of aging research is expanding alongside a growing focus from the industry and investors in aging research. This year's 8th Annual Aging Research and Drug Discovery ARDD) meeting was organized as a hybrid meeting from August 30th to September 3rd 2021 with more than 130 attendees participating on-site at the Ceremonial Hall at University of Copenhagen, Denmark, and 1800 engaging online. The conference comprised of presentations from 75 speakers focusing on new research in topics including mechanisms of aging and how these can be modulated as well as the use of AI and new standards of practices within aging research. This year, a longevity workshop was included to build stronger connections with the clinical community

    Characterization of Granulations of Calcium and Apatite in Serum as Pleomorphic Mineralo-Protein Complexes and as Precursors of Putative Nanobacteria

    Get PDF
    Calcium and apatite granulations are demonstrated here to form in both human and fetal bovine serum in response to the simple addition of either calcium or phosphate, or a combination of both. These granulations are shown to represent precipitating complexes of protein and hydroxyapatite (HAP) that display marked pleomorphism, appearing as round, laminated particles, spindles, and films. These same complexes can be found in normal untreated serum, albeit at much lower amounts, and appear to result from the progressive binding of serum proteins with apatite until reaching saturation, upon which the mineralo-protein complexes precipitate. Chemically and morphologically, these complexes are virtually identical to the so-called nanobacteria (NB) implicated in numerous diseases and considered unusual for their small size, pleomorphism, and the presence of HAP. Like NB, serum granulations can seed particles upon transfer to serum-free medium, and their main protein constituents include albumin, complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as well as other calcium and apatite binding proteins found in the serum. However, these serum mineralo-protein complexes are formed from the direct chemical binding of inorganic and organic phases, bypassing the need for any biological processes, including the long cultivation in cell culture conditions deemed necessary for the demonstration of NB. Thus, these serum granulations may result from physiologically inherent processes that become amplified with calcium phosphate loading or when subjected to culturing in medium. They may be viewed as simple mineralo-protein complexes formed from the deployment of calcification-inhibitory pathways used by the body to cope with excess calcium phosphate so as to prevent unwarranted calcification. Rather than representing novel pathophysiological mechanisms or exotic lifeforms, these results indicate that the entities described earlier as NB most likely originate from calcium and apatite binding factors in the serum, presumably calcification inhibitors, that upon saturation, form seeds for HAP deposition and growth. These calcium granulations are similar to those found in organisms throughout nature and may represent the products of more general calcium regulation pathways involved in the control of calcium storage, retrieval, tissue deposition, and disposal
    corecore