26 research outputs found

    Selective Adsorption and Chiral Amplification of Amino Acids in Vermiculite Clay -Implications for the origin of biochirality

    Full text link
    Smectite clays are hydrated layer silicates that, like micas, occur naturally in abundance. Importantly, they have readily modifiable interlayer spaces that provide excellent sites for nanochemistry. Vermiculite is one such smectite clay and in the presence of small chain-length alkyl-NH3Cl ions, forms sensitive, 1-D ordered model clay systems with expandable nano-pore inter-layer regions. These inter-layers readily adsorb organic molecules. N-propyl NH3Cl vermiculite clay gels were used to determine the adsorption of alanine, lysine and histidine by chiral HPLC. The results show that during reaction with fresh vermiculite interlayers, significant chiral enrichment of either L- and D-enantiomers occurs depending on the amino acid. Chiral enrichment of the supernatant solutions is up to about 1% per pass. In contrast, addition to clay interlayers already reacted with amino acid solutions resulted in little or no change in D/L ratio during the time of the experiment. Adsorption of small amounts of amphiphilic organic molecules in clay inter-layers is known to produce Layer-by-Layer or Langmuir-Blodgett films. Moreover atomistic simulations show that self-organization of organic species in clay interlayers is important. These non-centrosymmetric, chirally active nanofilms may cause clays to act subsequently as chiral amplifiers, concentrating organic material from dilute solution and having different adsorption energetics for D- and L-enantiomers. The additional role of clays in RNA oligimerization already postulated by Ferris and others, together with the need for the organization of amphiphilic molecules and lipids noted by Szostak and others, suggests that such chiral separation by clays in lagoonal environments at normal biological temperatures might also have played a significant role in the origin of biochirality.Comment: 17 Pages, 2 Figures, 4 Table

    P80 natural essence spray and lozenges provide respiratory protection against Influenza A, B, and SARS-CoV-2

    No full text
    Abstract Seasonally circulating viruses, such as Influenza, as well as newly emerging viruses and variants thereof, and waning immunity urge the need for safe, easy-to-use and inexpensive drugs to protect from these challenges. To prevent transmission of these viruses and subsequent excessive inflammatory reactions on mucous membranes, we tested the efficacy of the natural essence P80 as spray and in form of lozenges against respiratory infections caused by SARS-CoV-2 variants of concern (VoCs), influenza A (H3N2) and influenza B (Victoria). P80 natural essence, a Dimocarpus longan extract, shielded highly differentiated human airway epithelia from SARS-CoV-2 wildtype and Omicron variant as well as Influenza A and B infection and dampened inflammation by down-modulating pro-inflammatory cytokine and anaphylatoxin secretion. A single application of P80 natural essence spray maintained tissue integrity long-term. This also significantly reduced the release of infectious viral particles and the secretion of IP10, MCP1, RANTES and C3a, all of which mediate the migration of immune cells to the sites of infection. Even P80 lozenges dissolved in distilled water or non-neutralizing saliva efficiently prevented SARS-CoV-2 and Influenza-induced tissue destruction. Consequently, our in vitro data suggest that P80 natural essence can act as antiviral prophylactic, both in form of nasal or oral spray and in form of lozenges, independent of circulating respiratory challenges

    Comparison survey of EVOO polyphenols and exploration of healthy aging-promoting properties of oleocanthal and oleacein

    No full text
    Olive oil is widely accepted as a superior edible oil. Great attention has been given lately to olive oil polyphenols which are linked to significant health beneficial effects. Towards a survey of Greek olive oil focusing on polyphenols, representative extra virgin olive oils (EVOOs) from the main producing areas of the country and the same harvesting period have been collected and analyzed. Significant differences and interesting correlations have been identified connecting certain polyphenols namely hydroxytyrosol, tyrosol, oleacein and oleocanthal with specific parameters e.g. geographical origin, production procedure and cultivation practice. Selected EVOOs polyphenol extracts, with different oleacein and oleocanthal levels, as well as isolated oleacein and oleocanthal were bio-evaluated in mammalian cells and as a dietary supplement in the Drosophila in vivo model. We found that oleocanthal and oleacein activated healthy aging-promoting cytoprotective pathways and suppressed oxidative stress in both mammalian cells and in flies. © 201

    Quantification of Health Claim-Relevant Tyrosol and Hydroxytyrosol after Direct Hydrolysis Improves Customer Understanding and Mitigates Market Distortion

    No full text
    The EFSA-approved claim that olive oil is beneficial for cardiovascular health suffers from ambiguities that lead to a vague and potentially subjective interpretation of the underlying analytical data. Misunderstandings among customers, but also market distortions are possible consequences. In this study, a rapid and simple analytical technique is presented that circumvents the ambiguity by measuring levels of putative health-promoting compounds as the equivalent of tyrosol and hydroxytyrosol, cleaving such moieties from more complex constituents such as oleuropein and oleocanthal. Since the direct hydrolysis of the olive oil is the central element of the process, the reaction temperature, time, reagent concentration and reagent type were optimized. In addition, the influence of co-solvents, which might support the intermittent miscibility of the two phases during hydrolysis, was investigated. The analytical and economic implications are discussed particularly in the context of a commonly used technique

    Phytochemical Profiling, Antioxidant and Tyrosinase Regulatory Activities of Extracts from Herb, Leaf and In Vitro Culture of <i>Achillea millefolium</i> (Yarrow)

    No full text
    Achillea millefolium L. is one of the most known medicinal plants with a broad spectrum of applications in the treatment of inflammation, pain, microbial infections and gastrointestinal disorders. In recent years, the extracts from A. millefolium have also been applied in cosmetics with cleansing, moisturizing, shooting, conditioning and skin-lightening properties. The growing demand for naturally derived active substances, worsening environmental pollution and excessive use of natural resources are causing increased interest in the development of alternative methods for the production of plant-based ingredients. In vitro plant cultures are an eco-friendly tool for continuous production of desired plant metabolites, with increasing applicability in cosmetics and dietary supplements. The purpose of the study was to compare phytochemical composition and antioxidant and tyrosinase inhibitory properties of aqueous and hydroethanolic extracts from A. millefolium obtained from field conditions (AmL and AmH extracts) and in vitro cultures (AmIV extracts). In vitro microshoot cultures of A. millefolium were obtained directly from seeds and harvested following 3 weeks of culture. Extracts prepared in water, 50% ethanol and 96% ethanol were compared for the total polyphenolic content, phytochemical content using the ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC-hr-qTOF/MS), antioxidant activity by DPPH scavenging assay and the influence on the activity of mushroom and murine tyrosinases. The phytochemical content of AmIV extracts was significantly different from AmL and AmH extracts. Most of the polyphenolic compounds identified in AmL and AmH extracts were present in AmIV extracts only in trace amounts and the major constituents presented in AmIV extracts were fatty acids. The total content of polyphenols in AmIV exceeded 0.25 mg GAE/g of dried extract, whereas AmL and AmH extracts contained from 0.46 ± 0.01 to 2.63 ± 0.11 mg GAE/g of dried extract, depending on the solvent used. The low content of polyphenols was most likely responsible for the low antioxidant activity of AmIV extracts (IC50 values in DPPH scavenging assay >400 µg/mL) and the lack of tyrosinase inhibitory properties. AmIV extracts increased the activity of mushroom tyrosinase and tyrosinase present in B16F10 murine melanoma cells, whereas AmL and AmH extracts showed significant inhibitory potential. The presented data indicated that microshoot cultures of A. millefolium require further experimental research before they can be implemented as a valuable raw material for the cosmetics industry

    Assessment of the temperature of the heat coil of a commercially available vaporizer.

    No full text
    <p>The diagram in Fig 4 shows the two temperature curves of the heating element in ‘dry mode’ and ‘wet mode’; the broken line reflect the temperatures of the coil when surrounded by liquid (wet), the continuous line reflects the temperatures measured in the absence of a liquid (dry). The experiment was repeated three times. Data shown are mean values +/- S.D. Temperature was analysed using an infrared thermometer (max temperature (tmax) that can be measured using the device is 217°C). The image in the lower right of the diagram shows a photograph of different liquids, which remained in the liquid container during several times of e-cigarette vapour extract generation. All liquids were initially clear and colourless. Examples are shown.</p

    Anti-Inflammatory Extract from Soil Algae Chromochloris zofingiensis Targeting TNFR/NF-&kappa;B Signaling at Different Levels

    No full text
    Inflammatory skin diseases, including atopic dermatitis (AD) and psoriasis, are increasing in populations worldwide. The treatment of patients with AD and other forms of skin inflammation is mainly based on the use of topical corticosteroids or calcineurin inhibitors, which can cause significant side effects with long-term use. Therefore, there is a great need for the development of more effective and less toxic anti-inflammatory agents suitable for the treatment of chronic skin lesions. Here, we screened a number of strains from the ASIB 505 terrestrial algae collection and identified a green algae Chromochloris zofingiensis with pronounced anti-inflammatory properties. We found that a crude nonpolar extract of C. zofingiensis (ID name NAE_2022C), grown upon nitrogen deprivation, acts as a bioactive substance by inhibiting TNFR/NF-&kappa;B responses in human skin keratinocyte HaCaT cells. We also found that NAE_2022C suppressed the secretion of pro-inflammatory cytokine tumor necrosis factor &alpha; (TNF&alpha;) and several Th1- and Th2-related chemokines in a reconstituted human epidermis. The TNFR/NF-&kappa;B pathway analysis showed multiple inhibitory effects at different levels and disclosed a direct targeting of IKK&beta; by the extract. Bioassay-guided fractionation followed by high-resolution mass spectrometry detected diacylglyceryl-trimethylhomoserine (DGTS), Lyso-DGTS (LDGTS), 5-phenylvaleric acid, theophylline and oleamide as leading metabolites in the active fraction of NAE_2022C. Further analysis identified betaine lipid DGTS (32:0) as one of the active compounds responsible for the NAE_2022C-mediated NF-&kappa;B suppression. Overall, this study presents an approach for the isolation, screening, and identification of anti-inflammatory secondary metabolites produced by soil algae
    corecore