45 research outputs found

    Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery

    Get PDF
    To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research

    Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart

    Get PDF
    Ischaemic heart disease and the heart failure that often results, remain the leading causes of death and disability in Europe and worldwide. As such, in order to prevent heart failure and improve clinical outcomes in patients presenting with an acute ST-segment elevation myocardial infarction and patients undergoing coronary artery bypass graft surgery, novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury. During the last three decades, a wide variety of ischaemic conditioning strategies and pharmacological treatments have been tested in the clinic - however, their translation from experimental to clinical studies for improving patient outcomes has been both challenging and disappointing. Therefore, in this Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart, we critically analyse the current state of ischaemic conditioning in both the experimental and clinical settings, provide recommendations for improving its translation into the clinical setting, and highlight novel therapeutic targets and new treatment strategies for reducing acute myocardial ischaemia/reperfusion injury

    SDR Platform for Wireless Cooperative Protocols

    No full text

    Active and Passive Fault-Tolerant LPV Control of Wind Turbines

    No full text
    Abstract—This paper addresses the design and comparison of active and passive fault-tolerant linear parameter-varying (LPV) controllers for wind turbines. The considered wind turbine plant model is characterized by parameter variations along the nominal operating trajectory and includes a model of an incipient fault in the pitch system. We propose the design of an active fault-tolerant controller (AFTC) based on an existing LPV controller design method and extend this method to apply for the design of a passive fault-tolerant controller (PFTC). Both controllers are based on output feedback and are scheduled on the varying parameter to manage the parameter-varying nature of the model. The PFTC only relies on measured system variables and an estimated wind speed, while the AFTC also relies on information from a fault diagnosis system. Consequently, the optimization problem involved in designing the PFTC is more difficult to solve, as it involves solving bilinear matrix inequalities (BMIs) instead of linear matrix inequalities (LMIs). Simulation results show the performance of the active fault-tolerant control system to be slightly superior to that of the passive fault-tolerant control system. I
    corecore