66 research outputs found

    Characterization of BAFF and APRIL subfamily receptors in rainbow trout (Oncorhynchus mykiss). Potential role of the BAFF/APRIL axis in the pathogenesis of proliferative kidney disease

    Get PDF
    We would like to thank Lucia González for technical assistance and Rosario Castro for producing some of the cDNAs used in this study. This work was supported by the European Research Council (ERC Starting Grant 2011 280469) and by the European Commission under the 7th Framework Programme for Research and Technological Development (FP7) of the European Union (Grant Agreement 311993 TARGETFISH) and under the Horizon H2020 research and innovation programme (Grant H2020-634429 ParaFishControl). This work was also partially funded by project AGL2014-54456-JIN from the Spanish Ministry of Economy and Competitiveness (MINECO). JWH was supported by the Swiss National Science Foundation (grant reference CRSII3_147649-1).Peer reviewedPublisher PD

    Torovirus porcino: caracterización molecular, diagnóstico y epidemiología en España

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 14-12-200

    A Global Transcriptome Analysis Reveals Molecular Hallmarks of Neural Stem Cell Death, Survival, and Differentiation in Response to Partial FGF-2 and EGF Deprivation

    Get PDF
    Neurosphere cell culture is a commonly used model to study the properties and potential applications of neural stem cells (NSCs). However, standard protocols to culture NSCs have yet to be established, and the mechanisms underlying NSC survival and maintenance of their undifferentiated state, in response to the growth factors FGF-2 and EGF are not fully understood. Using cultures of embryonic and adult olfactory bulb stem cells (eOBSCs and aOBSCs), we analyzed the consequences of FGF-2 and EGF addition at different intervals on proliferation, cell cycle progression, cell death and differentiation, as well as on global gene expression. As opposed to cultures supplemented daily, addition of FGF-2 and EGF every 4 days significantly reduced the neurosphere volume and the total number of cells in the spheres, mainly due to increased cell death. Moreover, partial FGF-2 and EGF deprivation produced an increase in OBSC differentiation during the proliferative phase. These changes were more evident in aOBSC than eOBSC cultures. Remarkably, these effects were accompanied by a significant upregulation in the expression of endogenous Fgf-2 and genes involved in cell death and survival (Cryab), lipid catabolic processes (Pla2g7), cell adhesion (Dscaml1), cell differentiation (Dscaml1, Gpr17, S100b, Ndrg2) and signal transduction (Gpr17, Ndrg2). These findings support that a daily supply of FGF-2 and EGF is critical to maintain the viability and the undifferentiated state of NSCs in culture, and they reveal novel molecular hallmarks of NSC death, survival and the initiation of differentiation. © 2013 Nieto-Estévez et al.Peer Reviewe

    Seroprevalence of Porcine torovirus (PToV) in Spanish farms

    Get PDF
    Background: Torovirus infections have been associated with gastroenteritis and diarrhea in horses, cows, pigs and humans, especially in young animals and in children. Although asymptomatic in a large percentage of cases, however toroviruses may pose a potential threat to worsen disease outcome in concurrent infections with other enteric pathogens. Previous studies based on the analysis of limited numbers of samples indicated high seroprevalences against porcine torovirus (PToV) in various European countries. The aim of this work was to perform a seroepidemiological survey of PToV in Spanish farms in order to define the seroprevalence against this virus. Results: Serum samples (n = 2664) from pigs of different ages were collected from 100 Spanish farms coming from 10 regions that concentrate 96.1% of the 3392 farms with 80 or more sows censused in Spain. Samples were screened by means of an indirect enzyme-linked immune-sorbent assay (ELISA) based on a recombinant PToV nucleocapsid protein as antigen. The analysis of the whole serum collection yielded a total of 95.7% (2550/2664) seropositive samples. The highest prevalence (99.6%, 1382/1388) and ELISA values (average O.D. ± standard deviation) were observed in the sows (1.03±0.36) and the lowest prevalence (59.4%, 98/165) and anti-PToV IgG levels (0.45±0.16) were found amongst 3-week-old piglets. Both ELISA reactivity values and seroprevalence percentages rose quickly with piglet's age from 3 to 11 weeks of age; the seroprevalence was 99.3% (2254/2270) when only the samples from sows and pigs over 11-weeks of age were considered. Antibodies against PToV were detected in all analyzed farms. Conclusions: This report describes the results of the largest torovirus seroepidemiological survey in farmed swine performed so far. Overall, the seroprevalence against PToV in animals older than 11 weeks of age was >99%, indicating that this virus is endemic in pig herds from Spain

    Tbr1 Misexpression Alters Neuronal Development in the Cerebral Cortex

    Full text link
    Changes in the transcription factor (TF) expression are critical for brain development, and they may also underlie neurodevelopmental disorders. Indeed, T-box brain1 (Tbr1) is a TF crucial for the formation of neocortical layer VI, and mutations and microdeletions in that gene are associated with malformations in the human cerebral cortex, alterations that accompany autism spectrum disorder (ASD). Interestingly, Tbr1 upregulation has also been related to the occurrence of ASD-like symptoms, although limited studies have addressed the effect of increased Tbr1 levels during neocortical development. Here, we analysed the impact of Tbr1 misexpression in mouse neural progenitor cells (NPCs) at embryonic day 14.5 (E14.5), when they mainly generate neuronal layers II-IV. By E18.5, cells accumulated in the intermediate zone and in the deep cortical layers, whereas they became less abundant in the upper cortical layers. In accordance with this, the proportion of Sox5+ cells in layers V-VI increased, while that of Cux1+ cells in layers II-IV decreased. On postnatal day 7, fewer defects in migration were evident, although a higher proportion of Sox5+ cells were seen in the upper and deep layers. The abnormal neuronal migration could be partially due to the altered multipolar-bipolar neuron morphologies induced by Tbr1 misexpression, which also reduced dendrite growth and branching, and disrupted the corpus callosum. Our results indicate that Tbr1 misexpression in cortical NPCs delays or disrupts neuronal migration, neuronal specification, dendrite development and the formation of the callosal tract. Hence, genetic changes that provoke ectopic Tbr1 upregulation during development could provoke cortical brain malformations

    Insulin regulates neurovascular coupling through astrocytes

    Get PDF
    Mice with insulin receptor (IR)-deficient astrocytes (GFAP-IR knockout [KO] mice) show blunted responses to insulin and reduced brain glucose uptake, whereas IRdeficient astrocytes show disturbed mitochondrial responses to glucose. While exploring the functional impact of disturbed mitochondrial function in astrocytes, we observed that GFAP-IR KO mice show uncoupling of brain blood flow with glucose uptake. Since IR-deficient astrocytes show higher levels of reactive oxidant species (ROS), this leads to stimulation of hypoxia-inducible factor-1¿ and, consequently, of the vascular endothelial growth factor angiogenic pathway. Indeed, GFAP-IR KO mice show disturbed brain vascularity and blood flow that is normalized by treatment with the antioxidant N-acetylcysteine (NAC). NAC ameliorated high ROS levels, normalized angiogenic signaling and mitochondrial function in IR-deficient astrocytes, and normalized neurovascular coupling in GFAP-IR KO mice. Our results indicate that by modulating glucose uptake and angiogenesis, insulin receptors in astrocytes participate in neurovascular coupling.We are thankful to M.Garcia and R. Cañadas for technical support. This work was funded by Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) (Instituto de Salud CarlosIII, Spain) to I.T.A., A.G., and T.I.; an Inter-CIBER project (PIE14/00061) to I.T.A.that forms part of the projects PID2019-104376RB-I00 (I.T.A.) and RTI2018-094887-B-I00 (M.N.) funded by MCIN/AEI/10.13039/501100011033; a grant from Junta de Andalucia Consejería de Economía y Conocimiento (P18-RT-2233 to A.G.) cofinanced by Programa Operativo FEDER 2014–2020; a grant from Instituto de Salud Carlos III Spain (cofinanced by FEDER funds from the European Union; PI21/00915 to A.G.); Grant PID2020-115218RB-I00 to T.I. funded by Ministerio de Ciencia e Innovación/Agencia Española de Investigación (MCIN/AEI/10.13039/501100011033); and a grant from Comunidad de Madrid through the European Social Fund (ESF)–financed programme Neurometabolismo-Comunidad de Madrid (NEUROMETAB-CM) (B2017/BMD-3700 to I.T.A.and T.I.). M.N. was also supported by the Spanish Ministry of Science and Innovation (Ramón y Cajal RYC-2016-20414). J.P.-U. was contracted by CIBERNED

    Lineage specific antigenic differences in porcine torovirus hemagglutinin-esterase (PToV-HE) protein

    Get PDF
    Abstract Hemagglutinin-esterases (HE) are viral envelope proteins present in some members from the toro-, corona- and orthomyxovirus families, all related with enteric and/or respiratory tract infections. HE proteins mediate reversible binding to sialic acid receptor determinants, very abundant glycan residues in the enteric and respiratory tracts. The role of the HE protein during the torovirus infection cycle remains unknown, although it is believed to be important in the natural infection process. The phylogenetic analysis of HE coding sequences from porcine torovirus (PToV) field strains revealed the existence of two distinct HE lineages. In a previous study, PToV virus strains with HE proteins from the two lineages were found coexisting in a pig herd, and they were even obtained from the same animal at two consecutive sampling time points. In this work, we report antigenic differences between the two HE lineages, and discuss the possible implications that the coexistence of viruses belonging to both lineages might have on the spread and sustainment of PToV infection in the farms.This work was supported by grants AGL2010-15495 and CONSOLIDER-PORCIVIR CSD2006-00007 from the Spanish Ministry of Science and Innovation. Jaime Pignatelli and Julio Alonso-Padilla were both recipients of contracts financed with founding from the CONSOLIDER-PORCIVIR research project.Peer Reviewe

    Proteínas N, M y HE de torovirus porcino, procedimiento de obtención y sus aplicaciones en diagnóstico y tratamiento de torovirus porcino

    Get PDF
    Fecha de solicitud: 23-10-2007.- Titular: Consejo Superior de Investigaciones Científicas (CSIC)[EN] The present invention describes the immunogenic capacity of the porcine torovirus proteins N, M and HE, and the use thereof for development of methods for immunological diagnosis of porcine torovirus and also for preparation of specific antibodies. In addition, these proteins can be used for preparation of vaccines for the prevention of this disease in pigs.[ES] La presente invención describe la capacidad inmunogénica de las proteínas porcinas N, M y ÉL, y el uso del torovirus de eso para el desarrollo de los métodos para el diagnóstico inmunológico del torovirus porcino y también para la preparación de anticuerpos específicos. Además, el bote de estas proteínas sea utilizado para la preparación de las vacunas para la prevención de esta enfermedad en cerdos.Peer reviewedConsejo Superior de Investigaciones Científicas (España)A1 Solicitud de patentes con informe sobre el estado de la técnic
    corecore