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Mice with insulin receptor (IR)–deficient astrocytes (GFAP-IR knockout [KO] mice)
show blunted responses to insulin and reduced brain glucose uptake, whereas IR-
deficient astrocytes show disturbed mitochondrial responses to glucose. While exploring
the functional impact of disturbed mitochondrial function in astrocytes, we observed
that GFAP-IR KO mice show uncoupling of brain blood flow with glucose uptake.
Since IR-deficient astrocytes show higher levels of reactive oxidant species (ROS), this
leads to stimulation of hypoxia-inducible factor-1α and, consequently, of the vascular
endothelial growth factor angiogenic pathway. Indeed, GFAP-IR KO mice show
disturbed brain vascularity and blood flow that is normalized by treatment with the
antioxidant N-acetylcysteine (NAC). NAC ameliorated high ROS levels, normalized
angiogenic signaling and mitochondrial function in IR-deficient astrocytes, and normal-
ized neurovascular coupling in GFAP-IR KO mice. Our results indicate that by modu-
lating glucose uptake and angiogenesis, insulin receptors in astrocytes participate in
neurovascular coupling.

insulin j astrocytes j neurovascular coupling

The pancreatic hormone insulin is not only a major regulator of body energy handling,
but also exerts many other functions, including vasoactive effects (1, 2) that may mod-
ulate brain perfusion (3). Indeed, endothelial dysfunction is associated with insulin
resistance (4) and is reflected in reduced cerebral perfusion (5), leading to suboptimal
oxygen levels in the brain. In this organ, astrocytes sense changes in oxygen pressure
(PO2), providing feedback information to processes involved in cerebral perfusion (6)
through a mechanism under intense scrutiny (7). In this way, astrocytes, together with
other cellular components of the neurovascular unit, are involved in neurovascular
responses to changes in brain activity (8). Because brain metabolic demands and blood
flow are coupled through functional hyperemia (9), astrocytes, that are sensitive to
insulin, have been proposed to participate both in glucose and O2 sensing (7).
We recently showed that insulin receptors in astrocytes participate in brain glucose

handling and the responses of these cells to glucose (10). In turn, astrocytes have an
intricate relationship with brain vessels through their end feet (11), placing them at the
crossroad between metabolic and vasoactive signals. Indeed, PO2 modulates vessel for-
mation in conjunction with metabolism (12). Ultimately, the size of the brain vascular
tree will affect the level of perfusion to this organ. Because changes in brain perfusion
and metabolism are associated with aging (13), are exacerbated in parallel in different
brain pathologies (8), and probably herald development of Alzheimer’s disease (AD)
(14), we examined the role of astrocytic insulin receptors (IRs) in brain perfusion, as
insulin resistance is associated with aging and neurodegeneration.
Ablation of IRs in astrocytes blocked entrance of, and brain responses to, circulating

insulin, suggesting that astrocytes form part of the intercellular pathway of passage of
this hormone into the brain. In vivo and in vitro analysis of the role of astrocytic IRs
in brain function revealed that glucose uptake and brain perfusion are integrated by
astrocytic IRs. This receptor is essential to maintain normal astrocytic mitochondrial
function and brain vascularization. Therefore, insulin modulates brain physiology
through astrocytes beyond central regulation of glucose allocation.

Results

Brain Activation by Circulating Insulin Involves IRs in Glial End Feet. We first deter-
mined whether IRs are present in astrocytic end feet ensheathing endothelial cells of
the blood–brain barrier (BBB), as its presence in this compartment may allow circulat-
ing insulin to be taken up by astrocytes. Using combined IR immunogold labeling and
electron microscopy we localized these receptors in astrocytic end feet (Fig. 1A and B,
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black arrows). This anatomical location, in close proximity to
endothelial cells that also express the IR (Fig. 1B, red arrows),
may allow the passage of circulating insulin into astrocytes by
transcytosis through endothelial cells (15).
As already documented (16), systemic administration of

insulin results in significant activation of brain IRs (*P < 0.05
vs. saline, t test; Fig. 1C). However, GFAP-IR knockout (KO)
mice show attenuated responses to peripheral insulin injection
(3 IU/kg, 100 μL), as determined by significantly reduced
phosphorylation of brain (*P < 0.05 vs. littermate controls,
t test; Fig. 1D), but not muscle IRs (Fig. 1E). The reduction in
brain IR phosphorylation was not related to lower brain IR
levels in mutant mice due to the ablation of astrocytic IRs
(**P < 0.01 vs. control littermates, t test; SI Appendix, Fig. S1A
and S1), since receptor activation was normalized to relative
levels (similar between tamoxifen-treated and nontreated mice;
see Lower blot in Fig. 1D). Conversely, direct intraparenchymal
insulin injection (3 IU/2 μL) into the brain of GFAP-IR KO
mice resulted in IR activation similar to littermate controls (SI
Appendix, Fig. S1B). Furthermore, GFAP-IR KO mice show
normal brain insulin-like growth factor I (IGF-I) receptor phos-
phorylation in response to systemic injection (1 μg/g intraperi-
toneally [i.p.]) of this close relative of insulin (SI Appendix, Fig.
S1C), indicating specific loss of brain sensitivity to systemic

insulin. In addition, control IRf/f mice injected with tamoxifen
show preserved brain IR phosphorylation in response to sys-
temic insulin (SI Appendix, Fig. S1D).

Since changes in intracellular Ca2+ levels are used as a proxy
of astrocyte activity (17), we determined whether circulating
insulin modulates intracellular Ca2+ in astrocytes of GFAP-IR
KO mice. We monitored in vivo Ca2+ levels in astrocytes located
in the somatosensory cortex by two-photon laser-scanning fluores-
cence microscopy using a genetically encoded Ca2+ indicator
(Lck-GCaMP6f) (Fig. 2A and B). We found that systemic admin-
istration of insulin (3 IU/kg; 100 μL), elicited increases in Ca2+

spike frequency in control littermates but not in GFAP-IR KO
mice (**P < 0.01, Kruskal–Wallis followed by a Wilcoxon test;
Fig. 2C and D), confirming that astrocytes directly respond to sys-
temic insulin and that the IR is mediating this effect.

To trace cellular pathways involved in the passage of blood-
borne insulin into the brain, we injected mice with digoxigenin-
labeled insulin (Dig-Ins, 3 μg/100 μL; SI Appendix, Fig. S2A) in
the carotid artery and examined its route of entrance by double
immunolabeling with anti-Dig and cell-specific markers after
careful transcardial saline perfusion (Materials and Methods). In
GFAP-IR KO mice injected with vehicle (oil), digoxigenin stain-
ing was readily seen in cell somas of neuronal appearance and in
the parenchyma (Fig. 3A, b and c). Double immunostaining
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Fig. 1. IRs in astrocyte end feet are needed for brain IR activation by peripheral insulin. (A) Electron microscopy photograph using immunogold labeling for
IRs, illustrating the presence of immunoeractive IR deposits in astroglial end feet surrounding brain capillaries and in endothelial cells. (B) A1 and A2 squares
from A, are shown at greater magnification. Note the presence of IR gold particles in endothelial cells (red arrows) and astrocytic end feet (black arrows).
(Scale bar in A, 2 μm and in B, 0.5 μm.) BV, brain vessel. (C) Phosphorylation of IRs in mouse somatosensory cortex after intraperitoneal injection of insulin
(3 IU/kg body weight) or saline (n = 10; t test, t = 3.54, *P < 0.05). (D) Phosphorylation of IRs after intraperitoneal injection of insulin in somatosensory cortex
of GFAP-IR KO mice and littermates injected with corn oil (n = 10; t test, t = 3.27, *P < 0.05, n = 10). (E) Phosphorylation of IRs in skeletal muscle of GFAP-IR
KO mice and littermates after intraperitoneal injection of insulin (3 IU/kg body weight). Activation of IRs is shown as amount of tyrosine phosphorylated
receptor (pTyr) normalized by total levels of immunoprecipitated IR (n = 10). Representative blots are shown.
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with anti-Dig and anti-NeuN, a neuronal marker, confirmed
that neurons accumulate Dig after peripheral injection of Dig-
Ins, in an IR-dependent manner (Fig. 3B and D). However, in
tamoxifen-treated GFAP-IR KO mice, Dig staining was much
less intense in the parenchyma, and neuronal-like somas were
absent (Fig. 3C, b and c, and D). In addition, Dig-Ins staining in
vessels was seen only in GFAP-IR KO mice (Fig. 3C, a, and SI

Appendix, Fig. S2B). Quantification of double-stained Dig+/
NeuN+ cells confirmed that GFAP-IR KO mice accumulate
very little amount of Dig, as compared to controls. Since all ani-
mals were profusely perfused with saline before immunocyto-
chemistry was performed, this suggests that in the absence of
astrocytic IRs, Dig-Ins is retained in the endothelium without
crossing into the brain parenchyma. As already reported (10),
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Fig. 2. Peripheral insulin modulates astrocyte activity. (A) Mouse bearing a cranial window (Left) and a macroscopic image of the mouse cranial window
(Right). (B) Representative two-photon fluorescence intensities for viral transfection of AAV5-PGFAP-Lck-GCaMP6f in somatosensory cortex imaging in vivo.
Note astrocytic end feet enwrapping blood vessels. (Scale bar, 35 μm.) (C, Left) Representative experiments showing the amplitude of calcium events vs. time
5 min before (basal) and 15 min after i.p. injection of insulin (3 IU/kg body weight) in control littermates (Top) and GFAP-IR KO (Bottom) mice. (Right) Repre-
sentative raster plot of ROI activity vs. time showing the frequency of calcium events 5 min before (basal) and 15 min after injection of insulin in control
(Top) and GFAP-IR KO (Bottom) mice. (D) Changes of spike frequency of Ca2+ signals per area 5 min before (basal) and 15 min after i.p. injection of insulin in
control (n = 12 from n = 4 mice, P < 0.01 Wilcoxon test) and GFAP-IR KO (n = 19 from n = 4 mice, P = 0.163 Wilcoxon test) mice. Differences between groups
were determined by Kruskal–Wallis test (**P < 0.01).

PNAS 2022 Vol. 119 No. 29 e2204527119 https://doi.org/10.1073/pnas.2204527119 3 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
SI

C
 U

N
ID

A
D

 D
E

 R
E

C
U

R
SO

S 
D

E
 I

N
FO

R
M

A
C

 o
n 

Se
pt

em
be

r 
14

, 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
16

1.
11

1.
15

1.
10

0.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2204527119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2204527119/-/DCSupplemental


GFAP astrocytes in GFAP-IR KO mice show a distinct activation-
like morphology as compared to astrocytes in littermates.

Brain Insulin Resistance Uncouples Brain Flow and Glucose
Uptake. Because young GFAP-IR KO mice have reduced brain
glucose uptake, probably related to decreased glucose trans-
porter 1 (GLUT1) levels in the brain (10) (SI Appendix, Fig.
S2C), we determined their brain perfusion, as blood flow and glu-
cose uptake may be linked through astrocytes (18), and insulin
can affect endothelial function (1, 2). Moreover, reduced GLUT1
elicits compensatory increases of the angiogenic factor VEGF (19)
that can promote vessel growth. Indeed, disturbed brain perfusion
and glucose uptake go hand in hand in different brain pathologies.
We examined brain perfusion along time using single-photon

emission computed tomography (SPECT) of 99mTc-D,L-
hexamethylpropylene amine oxime (99mTc-HMPAO) (20), as
age-related changes in brain blood flow also relate to astrocyte
activity (21). Young (∼3 mo of age, Upper bars in Fig. 4A)
GFAP-IR KO mice present significantly increased brain perfusion,
while at later ages (>1-y-old “aged” mice, Lower bars) brain perfu-
sion significantly decreased (**P < 0.01 vs. littermates, t test; Fig.
4A). Perfusion was altered along this age range only in GFAP-IR
KO mice (**P < 0.01 vs. littermates, t test; SI Appendix, Fig. S3A
and B) and depended on the timing of IR deletion, since when
tamoxifen was given to aged GFAP-IR KO mice, no disturbances
were seen (SI Appendix, Fig. S3C). Changes were specific for astro-
cytic IRs, as mice lacking astrocytic IGF-I receptors did not show
altered brain perfusion (SI Appendix, Fig. S3D).
Changes in redox status may interfere with cellular uptake of

99mTc-HMPAO (22). Because astrocytes lacking IR show
changes in mitochondrial function compatible with increased
generation of oxidative radicals (10), and astrocytes are the pre-
dominant cell type accumulating 99mTc-HMPAO in brain (23),
we determined levels of reactive oxygen species (ROS) in the brain
of GFAP-IR KO mice. No significant increases (P = 0.055, n =
10, 11; two-tailed t test) were seen in brain ROS levels in young
mice, whereas aged GFAP-IR KO mice show no changes as
compared with vehicle-injected controls (SI Appendix, Fig. S3E
and F). Since increased ROS reduces 99mTc-HMPAO uptake

(24), changes in 99mTc-HMPAO uptake do not seem related to
ROS levels.

Previously, we reported that GFAP-IR KO mice show
reduced brain glucose uptake at a young age (10). Indeed,
18F-fluoro-2-deoxy-D-glucose positron emission tomography
(18FDG-PET) analysis confirmed decreased brain glucose
uptake in young GFAP-IR KO mice (***P < 0.001, t test; Fig.
4B). However, in older GFAP-IR KO mice, brain glucose
uptake was slightly increased as compared to control, vehicle-
injected mice (Fig. 4B). Brain glucose uptake was significantly
changed along this age range only in GFAP-IR KO mice, as
their control littermates did not show significant changes along
this time (SI Appendix, Fig. S3G and H). Collectively, these
observations suggest that GFAP-IR KO mice have uncoupled
brain blood flow and brain glucose uptake with a changing pat-
tern along time.

IRs in Astrocytes Modulate Brain Angiogenesis. Since brain
99mTc-HMPAO uptake is mostly reflecting its astrocyte accu-
mulation and changes in astrocyte metabolism may interfere
with this uptake (23), we determined brain vessel biomarkers
to determine whether changes in 99mTc-HMPAO uptake par-
allel changes in vascularity. Brain levels of von Willebrand fac-
tor (vWF), a marker of microvessel density (25), were increased
in young, but not in adult GFAP-IR KO mice (*P < 0.05,
t test; Fig. 5A), matching the observed age-dependent changes
in brain perfusion (Fig. 4A). Further, morphometric evaluation
of brain vessels in GFAP-IR KO mice confirmed increased vas-
cularity in young but not older GFAP-IR KO mice (**P <
0.01, t test; Fig. 5B). Increased vascular density was present in
young, but not aged GFAP-IR KO mice, compared to litter-
mates (Fig. 5B, **P < 0.01), in agreement with the observed
perfusion values (Fig. 4A). However, the myelin-associated gly-
coprotein (MAG)/proteolipid protein 1 (PLP1) ratio, a marker
of white matter perfusion (26), remained unchanged in young
mice (SI Appendix, Fig. S3H and I), suggesting that gray matter
perfusion is specifically affected.

Furthermore, GFAP-IR KO mice showed time-dependent
changes in brain levels of the hypoxia-inducible factor (HIF)
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1α/vascular endothelial growth factor (VEGF) angiogenic path-
way, with increased expression in young mice and slightly reduced
or normal in older mice (*P < 0.05 and ***P < 0.001 vs. con-
trols, t test; Fig. 5C and D). Furthermore, mRNA expression of
angiogenic proteins such as transforming growth factor (TGF) β3,
VEGFa/c, and estrogen-related receptor beta (Erb)-receptor tyro-
sine kinase 2 (ErbB2), was increased in young mice (*P < 0.05,
and ***P < 0.001, t test; SI Appendix, Fig. S4A), as determined
by qPCR, whereas at later ages expression of these genes were
either reduced or within control levels (*P < 0.05, t test; SI
Appendix, Fig. S4B). Other genes related to angiogenesis such as
matrix metallopeptidase (Mmp)14 and prostaglandin-endoperoxide
synthase (PTGS) 1 remained unaffected (SI Appendix, Fig. S4C
and D). Further, expression of these angiogenic markers, including
Mmp14 and PTGS1, was increased in the brain of young mice
lacking IRs in tamoxifen-regulated glutamate/aspartate transporter

(GLAST) astrocytes (GLAST-IR KO mice; SI Appendix, Fig. S5),
that show a larger down-regulation of IRs in astrocytes (10). This
confirms increased expression of angiogenic markers in the brain of
young mice lacking IRs in either GFAP or GLAST astrocytes.

We then determined whether astrocytes are directly related
to brain changes of angiogenic mediators in GFAP-IR KO
mice. We reduced IR in astrocytes through two complementary
methods, i.e., RNA interference (RNAi) in wild-type (WT)
astrocytes or culturing of astrocytes from GFAP-IR KO mice.
After reducing IR expression in WT astrocytes by short-hairpin
RNA (sh-IR, Fig. 6A and B, Lower blots), levels of the angio-
genic signals HIF1α and VEGF increased (**P < 0.01, t test;
Fig. 6A and B). This is accompanied by increased expression of
VEGFa and TGFβ3 (*P < 0.5 and **P < 0.01, t test; Fig. 6C),
while other angiogenic signals, including VEGFc, PTGS1,
MmP14, ErbB2, and vWF remained unaltered. Thus, several,
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but not all the angionenic molecules altered in the brain were
also changed in IR-deficient astrocytes. Conversely, insulin up-
regulates this pathway in wild-type astrocytes (**P < 0.01, t test;
SI Appendix, Fig. S6A). These observations agree with previously
reported ligand-independent actions of IR (27), and hint to a key,
complex role of insulin signaling on astrocytic angiogenic pathways.
Because reduced astrocytic IR function affects neurons (10), we

determined whether its reduction also impacts brain endothelial
cells, as astrocytes are in close contact with them and their growth
and differentiation may be modulated by astrocyte-derived angio-
genic signals (28). We used astrocytes obtained from GFAP-IR
KO mice with reduced IR levels (**P < 0.01, t test; SI Appendix,
Fig. S6B) and cocultured them with wild-type endothelial cells.
We observed that higher levels of angiogenic markers in cocultures
of astrocytes lacking IR (HIF1α and VEGF, **P < 0.01, t test;
Fig. 6D and E), were accompanied by increased endothelial
growth, as determined by higher levels of CD31, a marker of
endothelial cells (***P < 0.01, t test; Fig. 6F) or stronger CD31
immunostaining of WT endothelial cells cocultured with GFAP-
IR KO astrocytes (Fig. 6G).
Since high glucose has been reported to interfere with the

mitogenic activity of astrocytes on endothelial cocultures (29),

we determined HIF1α/VEGF levels in astrocytes grown at dif-
ferent glucose concentrations and found glucose-dependent
increases in both (SI Appendix, Fig. S6C). While young GFAP-
IR KO mice show normal serum insulin levels (10), they are
hyperglycemic (*P < 0.05, t test; Fig. 7A), suggesting that
higher glucose may contribute to the observed higher brain
vascularity. Further, normalized brain glucose uptake in older
GFAP-IR KO mice may also be related to prior exposure to
hyperglycemia, which has been hypothesized to alter brain glu-
cose transporters (30). Indeed, brain GLUT1 expression in
aged GFAP-IR KO and GLAST-IR KO mice was higher than
in young ones and within control levels (SI Appendix, Fig. S2C,
Right), suggesting that early exposure to high glucose may under-
lie the recovery in GLUT1 levels and consequently in brain
glucose uptake. However, in vitro exposure to 50 mM glucose
increased expression of GLUT1 mRNA in control but not in
GFAP-IR KO astrocytes (***P < 0.001, t test; Fig. 7B). Thus,
recovery of brain glucose uptake along time in the brain of
GFAP-IR KO mice may involve other pathways.

IR Modulates Mitochondrial Function in Astrocytes. Since mito-
chondria modulate angiogenic signaling (31), and GFAP-IR
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KO mice show altered mitochondrial function in astrocytes
(10), we examined whether increased angiogenesis in these mice is
related to altered mitochondrial function. We determined levels of
ROS in IR-deficient astrocytes using 2’,7’-dichlorodihidrofluoresce�ın
diacetate (H2DCFDA), a ROS-sensitive fluorescent dye, and
found them increased as compared to control cultures (Fig. 7C).
Next, we inhibited ROS with N-acetylcysteine (NAC; 10 mM)
in IR-deficient astrocytes (Fig. 7D, compare Right and Left histo-
grams) to determine its role in angiogenic signaling and found
normalized HIF-1α/VEGF levels (Fig. 7E and F). These in vitro
observations in shRNA IR-transfected astrocytes were confirmed
in vivo. Treatment of young GFAP-IR KO mice with NAC
(600 mg/kg, ip) normalized brain blood flow (Fig. 7G) and glu-
cose uptake (Fig. 7H, compare with Fig. 4B, Upper bars), and
increased brain γ-l-glutamyl-l-cysteinyl-glycine (GSH), an anti-
oxidant defense metabolite found decreased in untreated mice
(**P < 0.01 and ***P < 0.001 vs. untreated GFAP-IR KO con-
trol mice, two-way ANOVA; Fig. 7I).
Increased ROS impairs mitochondrial function (32), whereas

defective mitochondria are removed by mitophagy (33). Indeed,
shRNA-transfected astrocytes showed a decreased mitofussin 2
(Mfn2)/Fis1 ratio, an indicator of increased mitophagy (**P <
0.01, t test; Fig. 8A), and increased depolarized mitochondria
(**P < 0.01, t test; Fig. 8B and SI Appendix, Fig. S7A), an indica-
tor of the preautophagic pool of dysfunctional mitochondria (34)
as determined by the ratio of red/green JC1, a fluorescence sensor
of mitochondrial membrane potential. ROS also stimulates

mitochondria biogenesis (35), and mitophagy is coupled to this
process (36). Indeed, IR-deficient astrocytes show increased
expression of peroxisome proliferator–activated receptor-gamma
coactivator-1alpha (PGC-1α), a marker of mitochondria biogene-
sis (**P < 0.01, t test; Fig. 8C).

Since mitochondria endoplasmic reticulum (ER) contact sites
(MERCs) in reactive astrocytes are involved in vascular remodel-
ing (37), and astrocyte morphology in GFAP-IR KO mice
resembles reactive astrocytes (10, 38), we analyzed MERC
dynamics, since this region is responsible for the interaction
between both organelles. We determined in IR-deficient astro-
cytes the assembly of the MERC complex formed by the
chaperone glucose regulated protein 75 (GRP75) with inositol
trisphosphate receptors (IP3R, located in the ER) and voltage-
dependent anion channel (VDAC, located in the mitochondria).
GRP75 tethers IP3R with VDAC and the resulting complex
bridges both organelles and is involved in Ca2+ signaling (39).
We used proximity ligation assays (PLAs) to determine the inter-
action of GRP75 with IP3R and of Grp75 with VDAC and in
this way the degree of contact at the mitochondrial–ER junction
(40). We found greatly decreased interaction between both pairs
of proteins, indicating reduced interaction of the two organelles
in IR-deficient astrocytes (**P < 0.01, t test Fig. 8D and E). Col-
lectively, mitochondrial activity seems impaired in IR-deficient
astrocytes, which helps explain changes in vasculature.

To determine the impact of altered mitochondrial dynamics
in angiogenic signaling/glucose handling by astrocytes lacking
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IR, mitophagy was inhibited with cyclosporine (5 μM) (41), as
indicated by a normalized Mfn2/Fis1 ratio in these cells (SI
Appendix, Fig. S7B). Cyclosporine normalized HIF-1α/VEGF
(SI Appendix, Fig. S7C and D) and GLUT1 (SI Appendix, Fig.
S7E) levels in GFAP-IR KO astrocytes. Hence, disturbed mito-
chondrial function in astrocytes with down-regulated IR alters
markers of angiogenic and glucose metabolism, suggesting that
it underlies the observed changes in brain perfusion and glucose
uptake.
Since mitochondria are involved in O2 (42) and glucose (43)

sensing, we next examined whether down-regulation of IR
affects these two mechanisms in astrocytes, as they are also
linked to angiogenesis and glucose uptake. We determined in
GFAP-IR KO astrocytes the levels of transient receptor poten-
tial ankyrin 1 (TRPA1) channels (**P < 0.01, t test; Fig. 9A)
and of nicotinamide adenine dinucleotide phosphate (NADPH)
(**P < 0.01, t test; Fig. 9B), two O2 sensors (44, 45) expressed
in astrocytes. We also determined levels of the mitochondrial
glucose sensor MondoA/Mlx, a transcription factor in the

mitochondrial membrane involved in responses to glucose (43),
and found it decreased in GFAP-IR KO astrocytes (**P < 0.01,
t test; Fig. 9C). Amelioration of ROS levels with NAC also
resulted in normalization of TRPA1, NADPH, and MondoA
levels (Fig. 9A–C). This suggests that excess ROS is involved in
decreased levels of O2 and glucose sensors in IR-defective astro-
cytes, which probably contributes to altered brain perfusion and
glucose uptake.

Discussion

These observations indicate that insulin receptors in astrocytes
modulate neurovascular coupling by modulating brain glucose
uptake and vascular function (Fig. 9D). Mice with insulin recep-
tor deficiency in astrocytes have been previously shown to display
central and peripheral deficiencies in glucose metabolism and glio-
transmission (10, 46). The present observations provide additional
evidence that insulin signaling in this type of glial cells is impor-
tant for brain function. Mice with IR deficiency in astrocytes
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develop brain insulin resistance, as previous results suggested (10),
together with uncoupled brain blood flow and glucose uptake.
We also observed disturbed mitochondrial function in astro-

cytes with down-regulated IR signaling, which is associated with
excess ROS production. Mitochondrial disturbances involved not
only previously documented structural and metabolic alterations
(10), but also led to impaired mitochondrial biogenesis, reduced
levels of glucose/O2 sensors, and decreased mitochondrial ER
contacts (that ultimately affect astrocyte Ca2+ signaling). The lat-
ter was also observed in proopiomelanocortin (POMC) neurons
of these mice (10). When high ROS levels or aberrant mitophagy
are pharmacologically ameliorated, mitochondrial function is
restored. Our findings describe a role for mitochondrial astrocytes
in the purported relationship between cerebral blood flow and
brain metabolism (18) and further substantiate brain blood flow
disturbances in insulin-resistant states (5).
The presence of IR in astroglial end feet, similar to previous

observations with the closely related insulin-like growth factor I
receptor (47), provides anatomical support for its actions on
the vasculature, as glial end feet are intricately participating in
neurovascular coupling (48). Anatomically, large bundles of

glial end-feet mitochondria are in close proximity to vessels
(49), assuring local metabolic support (50), and, as our results
now suggest, angiogenic signals. Changes in mitochondrial mor-
phology and increased autophagic-related organelles in astrocytes
lacking IR were previously observed (10). Conceivably, altered
angiogenic signaling in GFAP-IR KO mice may be the result of
altered mitochondrial function, as mitochondria modulate angio-
genesis (31). In agreement with angiogenic actions of astrocytic
IR, changes in angiogenic signaling are proportional to the degree
of reduction in astrocyte IR, i.e., its deletion in GLAST astrocytes
that constitute a larger population of astrocytes compared to
GFAP astrocytes (10), produces a larger increase in angiogenic
signaling compared to knockdown of IR in GFAP astrocytes.
Further, IR in pericytes has been reported to control retinal vas-
culature (2). Thus, IRs in BBB cells regulate vessel function.

An intriguing aspect of our observations is the evolving pattern
of glucose/blood flow uncoupling along time. While observations
of neurovascular uncoupling of brain glucose uptake and perfu-
sion along aging in humans are confusing (51), a contribution of
astrocytes has been recognized (21). Instances of uncoupling have
been documented under physiological conditions in experimental
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animals (52). These authors observed increased glucose uptake in
the face of reduced brain perfusion and invoked mediators pro-
duced by BBB cells (52). Thus, neurovascular coupling cannot
solely be explained as an energy-driven process.
A potential explanation of time-dependent changes in the

observed uncoupling is that protracted impairment of central and
peripheral glucose handling in GFAP-IR KO mice may gradually
wear off aberrant angiogenic signaling by astrocytes. Alternatively,
sustained mitochondrial injury in the brain of GFAP-IR KO
mice due to excess ROS in astrocytes, may eventually result in
loss of angiogenic potential. In turn, reduced perfusion in older
GFAP-IR KO mice is accompanied by slightly increased glucose
uptake, a common adaptive mechanism seen in humans.
Of note, ApoE4 carriers show a similar age-dependent change

in brain perfusion, with higher levels in young adults and lower
levels in older individuals (53). Since ApoE4 has been shown to
interfere with insulin signaling (54), we speculate that the mecha-
nism underlying age-dependent disturbed brain perfusion in
ApoE4 carriers may be impaired IR activity in astrocytes. This
possibility will require further study. Conversely, uncoupling
between brain perfusion and glucose metabolism has been
reported in prodromal stages of AD (55), and both processes
decay in parallel along progression of the disease (56). Since there
is growing awareness that AD is a syndrome arising from differ-
ent pathogenic processes, we hypothesize that brain insulin

resistance due to impaired astrocytic IR function may contribute
to pathology in specific subtypes of AD. Again, this will require
further study.

Although circulating insulin plays many important roles in
the brain (57), the key question of how it reaches its numerous
brain targets remains not entirely defined yet (15, 58). Early
observations documented the presence of insulin in the cerebro-
spinal fluid (CSF) and in the brain (59, 60). Just relatively
recently, the origin of brain insulin has been reasonably settled
(61), including not only a peripheral source, but also low local
production (62). Thus, for many years, insulin actions in the
brain were assumed to arise exclusively from pancreatic insulin
(63) that has to cross the BBB to exert its central actions.
Indeed, circulating insulin enters the brain through a saturable
transport mechanism (64). Whether the insulin receptor in
endothelial cells is involved in the process remains controver-
sial, as conflicting results have been published (15, 58, 65).
There are insulin receptors in epithelial cells in the blood–CSF
barrier at the choroid plexus (66), brain capillary endothelial
cells of the BBB (67) able to transcytose insulin (68) and astro-
cytes (69). Our results suggest that astrocytes act as a gateway
for circulating insulin into the brain, as previously hinted (10).
Once insulin crosses the vessels, it can be carried by the glym-
phatic system, travel through the interstitial space, and/or be
taken up by astrocytes. Thus, circulating insulin may reach its
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neuronal targets through these different intracerebral path-
ways. Knowledge of the entire route of entrance of circulating
insulin into the brain, including vessel transcytosis, is of great
relevance, as in diabetes and in several neurodegenerative diseases,
brain insulin resistance is a likely pathogenic component. Our
results pose astrocytic IRs as important targets for future studies in
the search of novel therapeutic options for brain insulin resistance.
Indeed, GFAP-IR KO mice develop brain insulin resistance, as
attested by blunted brain IR activation, reduced capture of circu-
lating insulin, and loss of astrocyte responses to systemic insulin.
This study contains several limitations. For instance, both the

PET and SPECT radiotracers used in this study are redox sensi-
tive (24), which could interfere with the interpretation of
changes in glucose uptake and blood flow, respectively. However,
increased oxidative stress is associated with increased PET and
decreased SPECT signal, respectively (24), making it unlikely
that the observed decreased PET and increased SPECT signatures
observed are related to increased brain ROS levels. Changes in
SPECT and PET signatures correlated with angiogenic markers
and GLUT1 levels, respectively, providing additional support to
the validity of the measurements. Another limitation of the study
is that we did not determine possible compensatory expression of
IR (and even the closely related IGF1R) in other types of brain
cells, which could contribute to the observed changes.
In summary, brain insulin resistance associates with increased

ROS production and mitochondrial disturbances and interferes
with functional hyperemia, resembling changes seen during brain
aging. These results add to the multitasking role of astrocytic IRs,
including regulation of peripheral glucose metabolism (70), glio-
transmission, dopaminergic activity, mood homeostasis (46), and
control of gonadal function (71). Boosting IR function in astro-
cytes may be of therapeutic value in neurodegenerative diseases
with altered tissue perfusion and hypometabolism.

Materials and Methods

Detailed methods are included in SI Appendix.

Animals. Wild-type 6-mo-old male mice (C57BL6/J) and mutant mice with insu-
lin receptors ablated in GFAP (GFAP-IR KO mice) or GLAST astrocytes (GLAST-IR
KO mice) under regulation of tamoxifen were generated as described in detail
before (10). Mice with IGF-I receptors ablated in GFAP astrocytes under the regu-
lation of tamoxifen were obtained as indicated in SI Appendix. Intraperitoneal
injection of tamoxifen for 5 consecutive days (75 mg/kg) to young mice (4 to
5 wk old) eliminated IR or IGF1R specifically in astrocytes, as reported (10).

Ca2+ Imaging. Chronic glass-covered cranial windows were implanted (Fig. 2A).
A stereotaxic microinjection (400 nL; 30 nL/min) of AAV2/5-PGFAP-Lck-GCaMP6f
(PENN Vector Core; viral titer 6.13 × 1013) was made. Imaging of GCaMP6f-
expressing astrocytes was performed with a two-photon laser scanning
microscope, custom-modified with a femtosecond laser (Chameleon Ultra II,
Coherent, Inc.) and ScanImage 3.8 software written in MATLAB (MathWorks;
RRID:SCR_001622), under isoflurane anesthesia (1 to 1.5%).

Cell Cultures and Transfections. Cultures were done as previously described
in detail (72). For transfection, astrocytes were electroporated (2 × 106 astrocytes
with 2 μg of plasmid DNA) before seeding, using an astrocyte Nucleofector Kit
(Amaxa, Lonza).

Immunofluorescence. Immunolabeling was performed as described (73).

PLAs. Assays were run using the Duolink In Situ Detection Reagents Red Kit
(DUO92008, Merck) as described (74).

NAC Administration. Six-week-old control littermates and GFAF IR KO mice
were given a 1% solution of N-acetyl-L-cysteine in the drinking water (pH 7.2,

Sigma) for a period of 4 mo. Then, mice were submitted for SPECT and PET anal-
ysis. Later, mice were killed and brain GSH content was measured.

For cell cultures, NAC was used at 10 mM for 24 h followed by different bio-
chemical determinations.

Immunoprecipitation and Western Blotting. Assays were performed as
described (75).

Immunoelectron Microscopy. Immunogold procedure was performed as
described (76).

SPECT/CT Imaging. Mice were intravenously (i.v.) injected with 99mTc-HMPAO
(Curium Pharma) in a volume of 0.2 mL. An ISOMED 2010 dose calibrator was
used to calibrate radiotracer doses. Thirty minutes after the injection of the radio-
tracer (32 to 42 MBq) SPECT and CT images were acquired with a bimodal Albira
SPECT/CT preclinical imaging system (Bruker). Activity was quantified by match-
ing the CT image of the skull of each animal to a common magnetic resonance
(MR) mouse brain template, in which regions of interest (ROI) were previously
delineated, as described elsewhere (77). ROI activity uptake was expressed as
the percentage injected activity (%ID).

18F-FDG PET Imaging. 18F-FDG PET was used to measure brain glucose han-
dling as described in detail before (78). 18F-FDG uptake in the different brain
regions was calculated in kBq/cc units.

ROS Imaging. Brain ROS levels were visualized following previously published
procedures with some modifications (79) (SI Appendix).

Biochemical Assays. The NADPH/NADP ratio in astrocytes was calculated using
a fluorometric NADP/NADPH assay (Abcam, ab176724). ROS levels in shRNA
transfected astrocytes was determined using the fluorescent H2DCFDA (Invitro-
gen, D399) ROS indicator as described (80). GSH levels in GFAP-IR KO astrocytes
were assessed using a fluorimetric glutathione assay (Sigma, CS1020) according
to the manufacturer’s instructions.

JC-1 Flow Cytometry. Astrocytes were nucleofected with IR siRNA or siRNA
scramble as control and grown in normal conditions. Side scatter analysis and
propidium iodide were used to discard death cells and gate selection.

Statistics. Data were analyzed with GraphPad Prism 8.0 software. Normality
was verified using the Kolmogorov–Smirnov test. Student’s t test was used for
comparison of two groups, or one- or two-way ANOVA for comparison of more
than two groups with a Bonferroni post hoc analysis. For nonnormally distributed
data, we used the Kruskal–Wallis test followed by the Wilcoxon test.

Data Availability. All study data are included in the article and/or supporting
information. The data has not been deposited in a public database.
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