46 research outputs found

    metaQuantome : an integrated, quantitative metaproteomics approach reveals connections between taxonomy and protein function in complex microbiomes

    Get PDF
    Microbiome research offers promising insights into the impact of microorganisms on biological systems. Metaproteomics, the study of microbial proteins at the community level, integrates genomic, transcriptomic, and proteomic data to determine the taxonomic and functional state of a microbiome. However, standard metaproteomics software is subject to several limitations, commonly supporting only spectral counts, emphasizing exploratory analysis rather than hypothesis testing and rarely offering the ability to analyze the interaction of function and taxonomy -that is, which taxa are responsible for different processes. Here we present metaQuantome, a novel, multifaceted software suite that analyzes the state of a microbiome by leveraging complex taxonomic and functional hierarchies to summarize peptide-level quantitative information, emphasizing label-free intensity-based methods. For experiments with multiple experimental conditions, metaQuantome offers differential abundance analysis, principal components analysis, and clustered heat map visualizations, as well as exploratory analysis for a single sample or experimental condition. We benchmark metaQuantome analysis against standard methods, using two previously published datasets: (1) an artificially assembled microbial community dataset (taxonomy benchmarking) and (2) a dataset with a range of recombinant human proteins spiked into an Escherichia coli background (functional benchmarking). Furthermore, we demonstrate the use of metaQuantome on a previously published human oral microbiome dataset. In both the taxonomic and functional benchmarking analyses, metaQuantome quantified taxonomic and functional terms more accurately than standard summarization- based methods. We use the oral microbiome dataset to demonstrate metaQuantome's ability to produce publication- quality figures and elucidate biological processes of the oral microbiome. metaQuantome enables advanced investigation of metaproteomic datasets, which should be broadly applicable to microbiome-related research. In the interest of accessible, flexible, and reproducible analysis, metaQuantome is open source and available on the command line and in Galaxy

    Improve your Galaxy text life: The Query Tabular Tool [version 1; referees: 1 approved, 2 approved with reservations]

    Get PDF
    Galaxy provides an accessible platform where multi-step data analysis workflows integrating disparate software can be run, even by researchers with limited programming expertise.  Applications of such sophisticated workflows are many, including those which integrate software from different ‘omic domains (e.g. genomics, proteomics, metabolomics). In these complex workflows, intermediate outputs are often generated as tabular text files, which must be transformed into customized formats which are compatible with the next software tools in the pipeline.  Consequently, many text manipulation steps are added to an already complex workflow, overly complicating the process and decreasing usability, especially for non-expert bench researchers focused on obtaining results.  In some cases, limitations to existing text manipulation are such that desired analyses can only be carried out using highly sophisticated processing steps beyond the reach of most users.  As a solution, we have developed the Query Tabular Galaxy tool, which leverages a SQLite database generated from tabular input data.  This database can be queried and manipulated to produce transformed and customized tabular outputs compatible with downstream processing steps.  Regular expressions can also be utilized for even more sophisticated manipulations, such as find and replace and other filtering actions.  Using several Galaxy-based multi-omic workflows as an example, we demonstrate how the Query Tabular tool dramatically streamlines and simplifies the creation of multi-step analyses, efficiently enabling complicated textual manipulations and processing.  This tool should find broad utility for users of the Galaxy platform seeking to develop and use sophisticated workflows involving text manipulation on tabular outputs

    An accessible proteogenomics informatics resource for cancer researchers

    Get PDF
    Proteogenomics has emerged as a valuable approach in cancer research, which integrates genomic and transcriptomic data with mass spectrometry–based proteomics data to directly identify expressed, variant protein sequences that may have functional roles in cancer. This approach is computationally intensive, requiring integration of disparate software tools into sophisticated workflows, challenging its adoption by nonexpert, bench scientists. To address this need, we have developed an extensible, Galaxy-based resource aimed at providing more researchers access to, and training in, proteogenomic informatics. Our resource brings together software from several leading research groups to address two foundational aspects of proteogenomics: (i) generation of customized, annotated protein sequence databases from RNA-Seq data; and (ii) accurate matching of tandem mass spectrometry data to putative variants, followed by filtering to confirm their novelty. Directions for accessing software tools and workflows, along with instructional documentation, can be found at z.umn.edu/canresgithub.publishedVersio

    Galaxy Training: A powerful framework for teaching!

    Get PDF
    There is an ongoing explosion of scientific datasets being generated, brought on by recent technological advances in many areas of the natural sciences. As a result, the life sciences have become increasingly computational in nature, and bioinformatics has taken on a central role in research studies. However, basic computational skills, data analysis, and stewardship are still rarely taught in life science educational programs, resulting in a skills gap in many of the researchers tasked with analysing these big datasets. In order to address this skills gap and empower researchers to perform their own data analyses, the Galaxy Training Network (GTN) has previously developed the Galaxy Training Platform (https://training.galaxyproject.org), an open access, community-driven framework for the collection of FAIR (Findable, Accessible, Interoperable, Reusable) training materials for data analysis utilizing the user-friendly Galaxy framework as its primary data analysis platform. Since its inception, this training platform has thrived, with the number of tutorials and contributors growing rapidly, and the range of topics extending beyond life sciences to include topics such as climatology, cheminformatics, and machine learning. While initially aimed at supporting researchers directly, the GTN framework has proven to be an invaluable resource for educators as well. We have focused our efforts in recent years on adding increased support for this growing community of instructors. New features have been added to facilitate the use of the materials in a classroom setting, simplifying the contribution flow for new materials, and have added a set of train-the-trainer lessons. Here, we present the latest developments in the GTN project, aimed at facilitating the use of the Galaxy Training materials by educators, and its usage in different learning environments

    Community-Driven Data Analysis Training for Biology

    Get PDF
    The primary problem with the explosion of biomedical datasets is not the data, not computational resources, and not the required storage space, but the general lack of trained and skilled researchers to manipulate and analyze these data. Eliminating this problem requires development of comprehensive educational resources. Here we present a community-driven framework that enables modern, interactive teaching of data analytics in life sciences and facilitates the development of training materials. The key feature of our system is that it is not a static but a continuously improved collection of tutorials. By coupling tutorials with a web-based analysis framework, biomedical researchers can learn by performing computation themselves through a web browser without the need to install software or search for example datasets. Our ultimate goal is to expand the breadth of training materials to include fundamental statistical and data science topics and to precipitate a complete re-engineering of undergraduate and graduate curricula in life sciences. This project is accessible at https://training.galaxyproject.org. We developed an infrastructure that facilitates data analysis training in life sciences. It is an interactive learning platform tuned for current types of data and research problems. Importantly, it provides a means for community-wide content creation and maintenance and, finally, enables trainers and trainees to use the tutorials in a variety of situations, such as those where reliable Internet access is unavailable

    A rigorous evaluation of optimal peptide targets for MS-based clinical diagnostics of Coronavirus Disease 2019 (COVID-19)

    No full text
    The Coronavirus Disease 2019 (COVID-19) global pandemic has had a profound, lasting impact on the world's population. A key aspect to providing care for those with COVID-19 and checking its further spread is early and accurate diagnosis of infection, which has been generally done via methods for amplifying and detecting viral RNA molecules. Detection and quantitation of peptides using targeted mass spectrometry-based strategies has been proposed as an alternative diagnostic tool due to direct detection of molecular indicators from non-invasively collected samples as well as the potential for high-throughput analysis in a clinical setting; many studies have revealed the presence of viral peptides within easily accessed patient samples. However, evidence suggests that some viral peptides could serve as better indicators of COVID-19 infection status than others, due to potential misidentification of peptides derived from human host proteins, poor spectral quality, high limits of detection etc. In this study we have compiled a list of 639 peptides identified from Sudden Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) samples, including from in vitro and clinical sources. These datasets were rigorously analyzed using automated, Galaxy-based workflows containing tools such as PepQuery, BLAST-P, and the Multi-omic Visualization Platform as well as the open-source tools MetaTryp and Proteomics Data Viewer (PDV). Using PepQuery for confirming peptide spectrum matches, we were able to narrow down the 639 peptide possibilities to 87 peptides which were most robustly detected and specific to the SARS-CoV-2 virus. The specificity of these sequences to coronavirus taxa was confirmed using Unipept and BLAST-P. Applying stringent statistical scoring thresholds, combined with manual verification of peptide spectrum match quality, 4 peptides derived from the nucleocapsid phosphoprotein and membrane protein were found to be most robustly detected across all cell culture and clinical samples, including those collected non-invasively. We propose that these peptides would be of the most value for clinical proteomics applications seeking to detect COVID-19 from a variety of sample types. We also contend that samples taken from the upper respiratory tract and oral cavity have the highest potential for diagnosis of SARS-CoV-2 infection from easily collected patient samples using mass spectrometry-based proteomics assays
    corecore