93 research outputs found

    Histone 2B monoubiquitination complex integrates transcript elongation with RNA processing at circadian clock and flowering regulators

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaHISTONE MONOUBIQUITINATION1 (HUB1) and its paralog HUB2 act in a conserved heterotetrameric complex in the chromatin-mediated transcriptional modulation of developmental programs, such as flowering time, dormancy, and the circadian clock. The KHD1 and SPEN3 proteins were identified as interactors of the HUB1 and HUB2 proteins with in vitro RNA-binding activity. Mutants in SPEN3 and KHD1 had reduced rosette and leaf areas. Strikingly, in spen3 mutants, the flowering time was slightly, but significantly, delayed, as opposed to the early flowering time in the hub1-4 mutant. The mutant phenotypes in biomass and flowering time suggested a deregulation of their respective regulatory genes CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) and FLOWERING LOCUS C (FLC) that are known targets of the HUB1-mediated histone H2B monoubiquitination (H2Bub). Indeed, in the spen3-1 and hub1-4 mutants, the circadian clock period was shortened as observed by luciferase reporter assays, the levels of the CCA1α and CCA1β splice forms were altered, and the CCA1 expression and H2Bub levels were reduced. In the spen3-1 mutant, the delay in flowering time was correlated with an enhanced FLC expression, possibly due to an increased distal versus proximal ratio of its antisense COOLAIR transcript. Together with transcriptomic and double-mutant analyses, our data revealed that the HUB1 interaction with SPEN3 links H2Bub during transcript elongation with pre-mRNA processing at CCA1. Furthermore, the presence of an intact HUB1 at the FLC is required for SPEN3 function in the formation of the FLC-derived antisense COOLAIR transcripts

    The Evening Complex establishes repressive chromatin domains via H2A.Z deposition

    Get PDF
    The Evening Complex (EC) is a core component of the Arabidopsis (Arabidopsis thaliana) circadian clock, which represses target gene expression at the end of the day and integrates temperature information to coordinate environmental and endogenous signals. Here we show that the EC induces repressive chromatin structure to regulate the evening transcriptome. The EC component ELF3 directly interacts with a protein from the SWI2/SNF2-RELATED (SWR1) complex to control deposition of H2A.Z-nucleosomes at the EC target genes. SWR1 components display circadian oscillation in gene expression with a peak at dusk. In turn, SWR1 is required for the circadian clockwork, as defects in SWR1 activity alter morning55 expressed genes. The EC-SWR1 complex binds to the loci of the core clock genes PSEUDO56 RESPONSE REGULATOR7 (PRR7) and PRR9 and catalyzes deposition of nucleosomes containing the histone variant H2A.Z coincident with the repression of these genes at dusk. This provides a mechanism by which the circadian clock temporally establishes repressive chromatin domains to shape oscillatory gene expression around dusk

    Fruit load modulates flowering-related gene expression in buds of alternate-bearing 'Moncada' mandarin

    Full text link
    Background and Aims Gene determination of flowering is the result of complex interactions involving both promoters and inhibitors. In this study, the expression of flowering-related genes at the meristem level in alternate-bearing citrus trees is analysed, together with the interplay between buds and leaves in the determination of flowering. Methods First defruiting experiments were performed to manipulate blossoming intensity in `Moncada¿ mandarin, Citrus clementina. Further defoliation was performed to elucidate the role leaves play in the flowering process. In both cases, the activity of flowering-related genes was investigated at the flower induction (November) and differentiation (February) stages. Key Results Study of the expression pattern of flowering-genes in buds from on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (CiFT), TWIN SISTER OF FT (TSF), APETALA1 (CsAP1) and LEAFY (CsLFY) were negatively affected by fruit load. CiFT and TSF activities showed a marked increase in buds from off trees through the study period (ten-fold in November). By contrast, expression of the homologues of the flowering inhibitors of TERMINAL FLOWER 1 (CsTFL), TERMINAL FLOWER 2 (TFL2) and FLOWERING LOCUS C (FLC) was generally lower in off trees. Regarding floral identity genes, the increase in CsAP1 expression in off trees was much greater in buds than in leaves, and significant variations in CsLFY expression (approx. 20 %) were found only in February. Defoliation experiments further revealed that the absence of leaves completely abolished blossoming and severely affected the expression of most of the flowering-related genes, particularly decreasing the activity of floral promoters and of CsAP1 at the induction stage. Conclusions These results suggest that the presence of fruit affects flowering by greatly altering gene-expression not only at the leaf but also at the meristem level. Although leaves are required for flowering to occur, their absence strongly affects the activity of floral promoters and identity genes.This work was supported by a grant from the Instituto Nacional Investigaciones Agrarias, Spain (RTA2009-00147). M. C. Gonzalez was the recipient of a contract by the Fundacion Agroalimed (Conselleria d'Agricultura, Pesca i Alimentacio, Generalitat Valenciana).Muñoz Fambuena, N.; Mesejo Conejos, C.; Gonzalez Más, MC.; Primo-Millo, E.; Agustí Fonfría, M.; Iglesias, DJ. (2012). Fruit load modulates flowering-related gene expression in buds of alternate-bearing 'Moncada' mandarin. Annals of Botany. 110(6):1109-1118. doi:10.1093/aob/mcs190S110911181106Abe, M. (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science, 309(5737), 1052-1056. doi:10.1126/science.1115983Bustin, S. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 23-39. doi:10.1677/jme.0.0290023Corbesier, L., & Coupland, G. (2006). The quest for florigen: a review of recent progress. Journal of Experimental Botany, 57(13), 3395-3403. doi:10.1093/jxb/erl095Dornelas, M. C., Camargo, R. L. B., Figueiredo, L. H. M., & Takita, M. A. (2007). A genetic framework for flowering-time pathways in Citrus spp. Genetics and Molecular Biology, 30(3 suppl), 769-779. doi:10.1590/s1415-47572007000500006Endo, T., Shimada, T., Fujii, H., Kobayashi, Y., Araki, T., & Omura, M. (2005). Ectopic Expression of an FT Homolog from Citrus Confers an Early Flowering Phenotype on Trifoliate Orange (Poncirus trifoliata L. Raf.). Transgenic Research, 14(5), 703-712. doi:10.1007/s11248-005-6632-3Esumi, T., Hagihara, C., Kitamura, Y., Yamane, H., & Tao, R. (2009). Identification of anFTortholog in Japanese apricot (Prunus mumeSieb. et Zucc.). The Journal of Horticultural Science and Biotechnology, 84(2), 149-154. doi:10.1080/14620316.2009.11512496Esumi, T., Kitamura, Y., Hagihara, C., Yamane, H., & Tao, R. (2010). Identification of a TFL1 ortholog in Japanese apricot (Prunus mume Sieb. et Zucc.). Scientia Horticulturae, 125(4), 608-616. doi:10.1016/j.scienta.2010.05.016Giakountis, A., & Coupland, G. (2008). Phloem transport of flowering signals. Current Opinion in Plant Biology, 11(6), 687-694. doi:10.1016/j.pbi.2008.10.003Hashimoto, J. G., Beadles-Bohling, A. S., & Wiren, K. M. (2004). Comparison of RiboGreen®and 18S rRNA quantitation for normalizing real-time RT-PCR expression analysis. BioTechniques, 36(1), 54-60. doi:10.2144/04361bm06Jaeger, K. E., Graf, A., & Wigge, P. A. (2006). The control of flowering in time and space. Journal of Experimental Botany, 57(13), 3415-3418. doi:10.1093/jxb/erl159Jang, S., Torti, S., & Coupland, G. (2009). Genetic and spatial interactions betweenFT,TSFandSVPduring the early stages of floral induction in Arabidopsis. The Plant Journal, 60(4), 614-625. doi:10.1111/j.1365-313x.2009.03986.xJaya, E. S. K. D., Clemens, J., Song, J., Zhang, H., & Jameson, P. E. (2009). Quantitative expression analysis of meristem identity genes in Eucalyptus occidentalis: AP1 is an expression marker for flowering. Tree Physiology, 30(2), 304-312. doi:10.1093/treephys/tpp117Koshita, Y., Takahara, T., Ogata, T., & Goto, A. (1999). Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc.). Scientia Horticulturae, 79(3-4), 185-194. doi:10.1016/s0304-4238(98)00209-xKotoda, N., Hayashi, H., Suzuki, M., Igarashi, M., Hatsuyama, Y., Kidou, S., … Abe, K. (2010). Molecular Characterization of FLOWERING LOCUS T-Like Genes of Apple (Malus × domestica Borkh.). Plant and Cell Physiology, 51(4), 561-575. doi:10.1093/pcp/pcq021Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., … Yu, H. (2008). A Repressor Complex Governs the Integration of Flowering Signals in Arabidopsis. Developmental Cell, 15(1), 110-120. doi:10.1016/j.devcel.2008.05.002Lord, E. M., & Eckard, K. J. (1985). Shoot Development in Citrus sinensis L. (Washington Navel Orange). I. Floral and Inflorescence Ontogeny. Botanical Gazette, 146(3), 320-326. doi:10.1086/337531Mathieu, J., Warthmann, N., Küttner, F., & Schmid, M. (2007). Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis. Current Biology, 17(12), 1055-1060. doi:10.1016/j.cub.2007.05.009Matsuda, N., Ikeda, K., Kurosaka, M., Takashina, T., Isuzugawa, K., Endo, T., & Omura, M. (2009). Early Flowering Phenotype in Transgenic Pears (Pyrus communis L.) Expressing the CiFT Gene. Journal of the Japanese Society for Horticultural Science, 78(4), 410-416. doi:10.2503/jjshs1.78.410Michaels, S. D., Himelblau, E., Kim, S. Y., Schomburg, F. M., & Amasino, R. M. (2004). Integration of Flowering Signals in Winter-Annual Arabidopsis. Plant Physiology, 137(1), 149-156. doi:10.1104/pp.104.052811Moss, G. I. (1971). Effect of fruit on flowering in relation to biennial bearing in sweet orange(Citrus sinensis). Journal of Horticultural Science, 46(2), 177-184. doi:10.1080/00221589.1971.11514396Muñoz-Fambuena, N., Mesejo, C., Carmen González-Mas, M., Primo-Millo, E., Agustí, M., & Iglesias, D. J. (2011). Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Annals of Botany, 108(3), 511-519. doi:10.1093/aob/mcr164Muñoz-Fambuena, N., Mesejo, C., González-Mas, M. C., Iglesias, D. J., Primo-Millo, E., & Agustí, M. (2012). Gibberellic Acid Reduces Flowering Intensity in Sweet Orange [Citrus sinensis (L.) Osbeck] by Repressing CiFT Gene Expression. Journal of Plant Growth Regulation, 31(4), 529-536. doi:10.1007/s00344-012-9263-yNishikawa, F., Endo, T., Shimada, T., Fujii, H., Shimizu, T., Omura, M., & Ikoma, Y. (2007). Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). Journal of Experimental Botany, 58(14), 3915-3927. doi:10.1093/jxb/erm246Nishikawa, F., Endo, T., Shimada, T., Fujii, H., Shimizu, T., Kobayashi, Y., … Omura, M. (2010). Transcriptional changes in CiFT-introduced transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Tree Physiology, 30(3), 431-439. doi:10.1093/treephys/tpp122Notaguchi, M., Abe, M., Kimura, T., Daimon, Y., Kobayashi, T., Yamaguchi, A., … Araki, T. (2008). Long-Distance, Graft-Transmissible Action of Arabidopsis FLOWERING LOCUS T Protein to Promote Flowering. Plant and Cell Physiology, 49(11), 1645-1658. doi:10.1093/pcp/pcn154Peña, L., Martín-Trillo, M., Juárez, J., Pina, J. A., Navarro, L., & Martínez-Zapater, J. M. (2001). Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotechnology, 19(3), 263-267. doi:10.1038/85719Pillitteri, L. J., Lovatt, C. J., & Walling, L. L. (2004). Isolation and Characterization of a TERMINAL FLOWER Homolog and Its Correlation with Juvenility in Citrus. Plant Physiology, 135(3), 1540-1551. doi:10.1104/pp.103.036178Pillitteri, L. J., Lovatt, C. J., & Walling, L. L. (2004). Isolation and Characterization of LEAFY and APETALA1 Homologues from Citrus sinensis L. Osbeck `Washington’. Journal of the American Society for Horticultural Science, 129(6), 846-856. doi:10.21273/jashs.129.6.0846Rottmann, W. H., Meilan, R., Sheppard, L. A., Brunner, A. M., Skinner, J. S., Ma, C., … Strauss, S. H. (2000). Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. The Plant Journal, 22(3), 235-245. doi:10.1046/j.1365-313x.2000.00734.xSherman, W. B., & Beckman, T. G. (2003). CLIMATIC ADAPTATION IN FRUIT CROPS. Acta Horticulturae, (622), 411-428. doi:10.17660/actahortic.2003.622.43Southerton, S. G., Strauss, S. H., Olive, M. R., Harcourt, R. L., Decroocq, V., Zhu, X., … Dennis, E. S. (1998). Plant Molecular Biology, 37(6), 897-910. doi:10.1023/a:1006056014079Sreekantan, L., & Thomas, M. R. (2006). VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Functional Plant Biology, 33(12), 1129. doi:10.1071/fp06144Takada, S., & Goto, K. (2003). TERMINAL FLOWER2, an Arabidopsis Homolog of HETEROCHROMATIN PROTEIN1, Counteracts the Activation of FLOWERING LOCUS T by CONSTANS in the Vascular Tissues of Leaves to Regulate Flowering Time. The Plant Cell, 15(12), 2856-2865. doi:10.1105/tpc.016345Tan, F.-C., & Swain, S. M. (2007). Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiologia Plantarum, 131(3), 481-495. doi:10.1111/j.1399-3054.2007.00971.xTränkner, C., Lehmann, S., Hoenicka, H., Hanke, M.-V., Fladung, M., Lenhardt, D., … Flachowsky, H. (2010). Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta, 232(6), 1309-1324. doi:10.1007/s00425-010-1254-2Vemmos, S. N. (1999). Carbohydrate content of inflorescent buds of defruited and fruiting pistachio (Pistacia vera L) branches in relation to biennial bearing. The Journal of Horticultural Science and Biotechnology, 74(1), 94-100. doi:10.1080/14620316.1999.11511079Wada, M., Cao, Q., Kotoda, N., Soejima, J., & Masuda, T. (2002). Plant Molecular Biology, 49(6), 567-577. doi:10.1023/a:1015544207121Wigge, P. A. (2005). Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 309(5737), 1056-1059. doi:10.1126/science.1114358Yahata, D., Matsumoto, K., & Ushijima, K. (2004). Relationship between Flower-bud Differentiation and Carbohydrate Contents in Spring Shoots of Very-early, Early and Late Maturing Cultivars of Satsuma Mandarin. Engei Gakkai zasshi, 73(5), 405-410. doi:10.2503/jjshs.73.405Yamaguchi, A., Kobayashi, Y., Goto, K., Abe, M., & Araki, T. (2005). TWIN SISTER OF FT (TSF) Acts as a Floral Pathway Integrator Redundantly with FT. Plant and Cell Physiology, 46(8), 1175-1189. doi:10.1093/pcp/pci151Yan, J., Yuan, F., Long, G., Qin, L., & Deng, Z. (2011). Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Molecular Biology Reports, 39(2), 1831-1838. doi:10.1007/s11033-011-0925-9YU, Q., MOORE, P. H., ALBERT, H. H., ROADER, A. H. K., & MING, R. (2005). Cloning and characterization of a FLORICAULA/LEAFY ortholog, PFL, in polygamous papaya. Cell Research, 15(8), 576-584. doi:10.1038/sj.cr.7290327Yu, X., Klejnot, J., & Lin, C. (2006). Florigen: One Found, More to Follow? Journal of Integrative Plant Biology, 48(6), 617-621. doi:10.1111/j.1744-7909.2006.00309.

    Balance or Synergies between Environment and Economy—A Note on Model Structures

    No full text
    The UN sustainable development goals contain environmental, economic, and social objectives. They may only be reached, or at least it would be easier to reach them, if instead of a trade-off between these objectives that implies a need for balancing them, there are synergies to be reaped. This paper discusses how the structures of economic models typically used in policy analysis influence whether win–win strategies for the environment and the economy can be conceptualised and analysed. With a focus on climate policy modelling, the paper points out how, by construction, commonly used model structures find mitigation costs rather than benefits. This paper describes mechanisms that, when added to these model structures, can bring win–win options into a model’s solution horizon, and which provide a spectrum of alternative modelling approaches that allow for the identification of such options

    Cost vs. reliability performance study of fiber access network architectures

    Full text link

    Service cost model and cost comparative studies

    Full text link
    PurposeThe purpose of this paper is to propose a service cost model which can be used to evaluate the impact of different management functionalities or network platforms to the service cost.Design/methodology/approachFollowing the validation of the importance that OpEx has on the overall TCO, a classification of the costs is proposed, based on their relation to the network. Two main types of costs have been identified: network based costs and service based costs. Both cost types have been modeled as a set of interconnected processes based on the network and service life cycle respectively. Network and service cost models have been integrated into a single framework. These models have been implemented as Markov chains, which include the dynamic behavior of services. Two different methods for the implementation (analytical versus non‐analytical) have been compared from the implementation and computation time point of view. The proposed service model has been used in two case studies: cost comparison of different types of services on different platforms; and impact of the service type distribution on the overall service cost on different platforms.FindingsThis paper finds the utility that the proposed cost model has. It has been shown that the impact on the overall service cost that a particular network platform capability such as the possibility of establishing point to multipoint connections has.. The proposed network and service cost models can be used on different types of networks and services.Originality/valueThe paper presents a general service cost model that can be used to study the impact of any management functionality or network platform has on the service cost.</jats:sec
    corecore