246 research outputs found

    Special Libraries

    Get PDF
    published or submitted for publicatio

    Unpublished research reports; a problem in bibliographical control

    Get PDF
    Caption title

    Ray helicity: a geometric invariant for multi-dimensional resonant wave conversion

    Full text link
    For a multicomponent wave field propagating into a multidimensional conversion region, the rays are shown to be helical, in general. For a ray-based quantity to have a fundamental physical meaning it must be invariant under two groups of transformations: congruence transformations (which shuffle components of the multi-component wave field) and canonical transformations (which act on the ray phase space). It is shown that for conversion between two waves there is a new invariant not previously discussed: the intrinsic helicity of the ray

    Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants—liquid and gaseous petroleum compounds plus chemical dispersants—poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional "in-place, in-kind" restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, the authors provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    Low-dimensional Bose liquids: beyond the Gross-Pitaevskii approximation

    Full text link
    The Gross-Pitaevskii approximation is a long-wavelength theory widely used to describe a variety of properties of dilute Bose condensates, in particular trapped alkali gases. We point out that for short-ranged repulsive interactions this theory fails in dimensions d less than or equal to 2, and we propose the appropriate low-dimensional modifications. For d=1 we analyze density profiles in confining potentials, superfluid properties, solitons, and self-similar solutions.Comment: 4 pages, 3 figure

    A Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants — liquid and gaseous petroleum compounds plus chemical dispersants — poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional “in-place, in-kind” restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, we provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period

    Get PDF
    The modeling study presented here aims to estimate how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (CH4) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios to force the offline atmospheric chemistry transport model LMDz (Laboratoire de Meteorologie Dynamique) with a standard CH4 emission scenario over the period 2000–2016. The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000–2010 ranges between 8:7*10^5 and 12:8*10^5 molec cm-3. The inter-model differences in tropospheric OH burden and vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1–0:3*10^5 molec cm-3 in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960–2000. Once ingested into the LMDz model, these OH changes translated into a 5 to 15 ppbv reduction in the CH4 mixing ratio in 2010, which represents 7%–20% of the model-simulated CH4 increase due to surface emissions. Between 2010 and 2016, the ensemble of simulations showed that OH changes could lead to a CH4 mixing ratio uncertainty of > 30 ppbv. Over the full 2000–2016 time period, using a common stateof- the-art but nonoptimized emission scenario, the impact of [OH] changes tested here can explain up to 54% of the gap between model simulations and observations. This result emphasizes the importance of better representing OH abundance and variations in CH4 forward simulations and emission optimizations performed by atmospheric inversions

    Climate Change Impacts on Iowa, 2010

    Get PDF
    Climate change is already affecting the way Iowans live and work. Without action to mitigate these effects, our future responses will become more complex and costly . The following policy recommendations are offered as initial steps to help safeguard our state’s economy, environment, and residents

    Dynamics of a ferromagnetic domain wall and the Barkhausen effect

    Get PDF
    We derive an equation of motion for the the dynamics of a ferromagnetic domain wall driven by an external magnetic field through a disordered medium and we study the associated depinning transition. The long-range dipolar interactions set the upper critical dimension to be dc=3d_c=3, so we suggest that mean-field exponents describe the Barkhausen effect for three-dimensional soft ferromagnetic materials. We analyze the scaling of the Barkhausen jumps as a function of the field driving rate and the intensity of the demagnetizing field, and find results in quantitative agreement with experiments on crystalline and amorphous soft ferromagnetic alloys.Comment: 4 RevTex pages, 3 ps figures embedde

    Organizational factors associated with readiness to implement and translate a primary care based telemedicine behavioral program to improve blood pressure control: the HTN-IMPROVE study

    Full text link
    Abstract Background Hypertension is prevalent and often sub-optimally controlled; however, interventions to improve blood pressure control have had limited success. Objectives Through implementation of an evidence-based nurse-delivered self-management phone intervention to facilitate hypertension management within large complex health systems, we sought to answer the following questions: What is the level of organizational readiness to implement the intervention? What are the specific facilitators, barriers, and contextual factors that may affect organizational readiness to change? Study design Each intervention site from three separate Veterans Integrated Service Networks (VISNs), which represent 21 geographic regions across the US, agreed to enroll 500 participants over a year with at least 0.5 full time equivalent employees of nursing time. Our mixed methods approach used a priori semi-structured interviews conducted with stakeholders (n = 27) including nurses, physicians, administrators, and information technology (IT) professionals between 2010 and 2011. Researchers iteratively identified facilitators and barriers of organizational readiness to change (ORC) and implementation. Additionally, an ORC survey was conducted with the stakeholders who were (n = 102) preparing for program implementation. Results Key ORC facilitators included stakeholder buy-in and improving hypertension. Positive organizational characteristics likely to impact ORC included: other similar programs that support buy-in, adequate staff, and alignment with the existing site environment; improved patient outcomes; is positive for the professional nurse role, and is evidence-based; understanding of the intervention; IT infrastructure and support, and utilization of existing equipment and space. The primary ORC barrier was unclear long-term commitment of nursing. Negative organizational characteristics likely to impact ORC included: added workload, competition with existing programs, implementation length, and limited available nurse staff time; buy-in is temporary until evidence shows improved outcomes; contacting patients and the logistics of integration into existing workflow is a challenge; and inadequate staffing is problematic. Findings were complementary across quantitative and qualitative analyses. Conclusions The model of organizational change identified key facilitators and barriers of organizational readiness to change and successful implementation. This study allows us to understand the needs and challenges of intervention implementation. Furthermore, examination of organizational facilitators and barriers to implementation of evidence-based interventions may inform dissemination in other chronic diseases.http://deepblue.lib.umich.edu/bitstream/2027.42/112820/1/13012_2013_Article_683.pd
    • 

    corecore