594 research outputs found

    Agglomeration of celecoxib by quasi emulsion solvent diffusion method: effect of stabilizer

    Get PDF
    Purpose: The quasi-emulsion solvent diffusion (QESD) has evolved into an effective technique to manufacture agglomerates of API crystals. Although, the proposed technique showed benefits, such as cost effectiveness, that is considerably sensitive to the choice of a stabilizer, which agonizes from a absence of systemic understanding in this field. In the present study, the combination of different solvents and stabilizers were compared to investigate any connections between the solvents and stabilizers. Methods: Agglomerates of celecoxib were prepared by QESD method using four different stabilizers (Tween 80, HPMC, PVP and SLS) and three different solvents (methyl acetate, ethyl acetate and isopropyl acetate). The solid state of obtained particles was investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectroscopy. The agglomerated were also evaluated in term of production yield, distribution of particles and dissolution behavior. Results: The results showed that the effectiveness of stabilizer in terms of particle size and particle size distribution is specific to each solvent candidate. A stabilizer with a lower HLB value is preferred which actually increased its effectiveness with the solvent candidates with higher lipophilicity. HPMC appeared to be the most versatile stabilizer because it showed a better stabilizing effect compared to other stabilizers in all solvents used. Conclusion: This study demonstrated that the efficiency of stabilizers in forming the celecoxib agglomerates by QESD was influenced by the HLB of the stabilizer and lipophilicity of the solvents

    Pauli's Principle in Probe Microscopy

    Get PDF
    Exceptionally clear images of intramolecular structure can be attained in dynamic force microscopy through the combination of a passivated tip apex and operation in what has become known as the "Pauli exclusion regime" of the tip-sample interaction. We discuss, from an experimentalist's perspective, a number of aspects of the exclusion principle which underpin this ability to achieve submolecular resolution. Our particular focus is on the origins, history, and interpretation of Pauli's principle in the context of interatomic and intermolecular interactions.Comment: This is a chapter from "Imaging and Manipulation of Adsorbates using Dynamic Force Microscopy", a book which is part of the "Advances in Atom and Single Molecule Machines" series published by Springer [http://www.springer.com/series/10425]. To be published late 201

    Towards Protein Crystallization as a Process Step in Downstream Processing of Therapeutic Antibodies: Screening and Optimization at Microbatch Scale

    Get PDF
    Crystallization conditions of an intact monoclonal IgG4 (immunoglobulin G, subclass 4) antibody were established in vapor diffusion mode by sparse matrix screening and subsequent optimization. The procedure was transferred to microbatch conditions and a phase diagram was built showing surprisingly low solubility of the antibody at equilibrium. With up-scaling to process scale in mind, purification efficiency of the crystallization step was investigated. Added model protein contaminants were excluded from the crystals to more than 95%. No measurable loss of Fc-binding activity was observed in the crystallized and redissolved antibody. Conditions could be adapted to crystallize the antibody directly from concentrated and diafiltrated cell culture supernatant, showing purification efficiency similar to that of Protein A chromatography. We conclude that crystallization has the potential to be included in downstream processing as a low-cost purification or formulation step

    Влияние интенсивности механической активации на структуру гексагонального нитрида бора

    Get PDF
    Изучено влияние интенсивности механической активации на микроструктуру и свойства гексагонального нитрида бора (hBN).Вивчено вплив інтенсивності механічної активації на мікроструктуру і властивості гексагонального нітриду бору (hBN).The mechanical activation intensity effect on the microstructure and properties of hexagonal boron nitride (hBN) has been studied

    Search for the decay modes D^0 → e^+e^-, D^0 → μ^+μ^-, and D^0 → e^±μ∓

    Get PDF
    We present searches for the rare decay modes D^0→e^+e^-, D^0→μ^+μ^-, and D^0→e^±μ^∓ in continuum e^+e^-→cc events recorded by the BABAR detector in a data sample that corresponds to an integrated luminosity of 468  fb^(-1). These decays are highly Glashow–Iliopoulos–Maiani suppressed but may be enhanced in several extensions of the standard model. Our observed event yields are consistent with the expected backgrounds. An excess is seen in the D^0→μ^+μ^- channel, although the observed yield is consistent with an upward background fluctuation at the 5% level. Using the Feldman–Cousins method, we set the following 90% confidence level intervals on the branching fractions: B(D^0→e^+e^-)<1.7×10^(-7), B(D^0→μ^+μ^-) within [0.6,8.1]×10^(-7), and B(D^0→e^±μ^∓)<3.3×10^(-7)

    Crystallisation route map

    Get PDF
    A route map for the assessment of crystallisation processes is presented. A theoretical background on solubility, meta-stable zone width, nucleation and crystal growth kinetics is presented with practical examples. The concepts of crystallisation hydrodynamics and the application of population balances and computational fluid dynamics for modelling crystallisation processes and their scaling up are also covered

    Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (<it>Pinus pinaster </it>Ait.), the main conifer used for commercial plantation in southwestern Europe.</p> <p>Results</p> <p>We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 <it>in vitro </it>SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 <it>in silico </it>SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for <it>in silico </it>and <it>in vitro </it>SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a <it>Pinus taeda </it>linkage map, made it possible to align the 12 linkage groups of both species.</p> <p>Conclusions</p> <p>Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers.</p

    Viruses Associated with Ovarian Degeneration in Apis mellifera L. Queens

    Get PDF
    Queen fecundity is a critical issue for the health of honeybee (Apis mellifera L.) colonies, as she is the only reproductive female in the colony and responsible for the constant renewal of the worker bee population. Any factor affecting the queen's fecundity will stagnate colony development, increasing its susceptibility to opportunistic pathogens. We discovered a pathology affecting the ovaries, characterized by a yellow discoloration concentrated in the apex of the ovaries resulting from degenerative lesions in the follicles. In extreme cases, marked by intense discoloration, the majority of the ovarioles were affected and these cases were universally associated with egg-laying deficiencies in the queens. Microscopic examination of the degenerated follicles showed extensive paracrystal lattices of 30 nm icosahedral viral particles. A cDNA library from degenerated ovaries contained a high frequency of deformed wing virus (DWV) and Varroa destructor virus 1 (VDV-1) sequences, two common and closely related honeybee Iflaviruses. These could also be identified by in situ hybridization in various parts of the ovary. A large-scale survey for 10 distinct honeybee viruses showed that DWV and VDV-1 were by far the most prevalent honeybee viruses in queen populations, with distinctly higher prevalence in mated queens (100% and 67%, respectively for DWV and VDV-1) than in virgin queens (37% and 0%, respectively). Since very high viral titres could be recorded in the ovaries and abdomens of both functional and deficient queens, no significant correlation could be made between viral titre and ovarian degeneration or egg-laying deficiency among the wider population of queens. Although our data suggest that DWV and VDV-1 have a role in extreme cases of ovarian degeneration, infection of the ovaries by these viruses does not necessarily result in ovarian degeneration, even at high titres, and additional factors are likely to be involved in this pathology
    corecore