257 research outputs found

    A case of familial isolated hemihyperplasia

    Get PDF
    BACKGROUND: Hemihyperplasia (hemihypertrophy) is defined as asymmetric body overgrowth of one or more body parts. Hemihyperplasia can be isolated or be part of well-defined syndromes such as in the case of Beckwith-Wiedemann syndrome (BWS). Isolated hemihyperplasia is usually sporadic, but a number of familial occurrences have been described. CASE PRESENTATION: We describe a Tunisian family in which three maternal cousins and their maternal grandfather present with isolated hemihyperplasia. CONCLUSIONS: The etiology of isolated hemihyperplasia is unknown although in BWS, genomic imprinting has been shown to play a role in the asymmetric overgrowth. Given the similarity between these two conditions, it is possible that both may share a common pathogenesis. We also discuss the possible genetic mechanisms leading to the production of hemihyperplasia in this family

    Ser/Thr/Tyr Protein Phosphorylation in the Archaeon Halobacterium salinarum—A Representative of the Third Domain of Life

    Get PDF
    In the quest for the origin and evolution of protein phosphorylation, the major regulatory post-translational modification in eukaryotes, the members of archaea, the “third domain of life”, play a protagonistic role. A plethora of studies have demonstrated that archaeal proteins are subject to post-translational modification by covalent phosphorylation, but little is known concerning the identities of the proteins affected, the impact on their functionality, the physiological roles of archaeal protein phosphorylation/dephosphorylation, and the protein kinases/phosphatases involved. These limited studies led to the initial hypothesis that archaea, similarly to other prokaryotes, use mainly histidine/aspartate phosphorylation, in their two-component systems representing a paradigm of prokaryotic signal transduction, while eukaryotes mostly use Ser/Thr/Tyr phosphorylation for creating highly sophisticated regulatory networks. In antithesis to the above hypothesis, several studies showed that Ser/Thr/Tyr phosphorylation is also common in the bacterial cell, and here we present the first genome-wide phosphoproteomic analysis of the model organism of archaea, Halobacterium salinarum, proving the existence/conservation of Ser/Thr/Tyr phosphorylation in the “third domain” of life, allowing a better understanding of the origin and evolution of the so-called “Nature's premier” mechanism for regulating the functional properties of proteins

    Hemodialysis vascular access options in pediatrics: considerations for patients and practitioners

    Get PDF
    Recent data indicate that the incidence of end-stage renal disease (ESRD) in pediatric patients (age 0–19 years) has increased over the past two decades. Similarly, the prevalence of ESRD has increased threefold over the same period. Hemodialysis (HD) continues to be the most frequently utilized modality for renal replacement therapy in incident pediatric ESRD patients. The number of children on HD exceeded the sum total of those on peritoneal dialysis and those undergoing pre-emptive renal transplantation. Choosing the best vascular access option for pediatric HD patients remains challenging. Despite a national initiative for fistula first in the adult hemodialysis population, the pediatric nephrology community in the United States of America utilizes central venous catheters as the primary dialysis access for most patients. Vascular access management requires proper advance planning to assure that the best permanent access is placed, seamless communication involving a multidisciplinary team of nephrologists, nurses, surgeons, and interventional radiologists, and ongoing monitoring to ensure a long life of use. It is imperative that practitioners have a long-term vision to decrease morbidity in this unique patient population. This article reviews the various types of pediatric vascular accesses used worldwide and the benefits and disadvantages of these various forms of access

    Migration of Th1 Lymphocytes Is Regulated by CD152 (CTLA-4)-Mediated Signaling via PI3 Kinase-Dependent Akt Activation

    Get PDF
    Efficient adaptive immune responses require the localization of T lymphocytes in secondary lymphoid organs and inflamed tissues. To achieve correct localization of T lymphocytes, the migration of these cells is initiated and directed by adhesion molecules and chemokines. It has recently been shown that the inhibitory surface molecule CD152 (CTLA-4) initiates Th cell migration, but the molecular mechanism underlying this effect remains to be elucidated. Using CD4 T lymphocytes derived from OVA-specific TCR transgenic CD152-deficient and CD152-competent mice, we demonstrate that chemokine-triggered signal transduction is differentially regulated by CD152 via phosphoinositide 3-kinase (PI3K)-dependent activation of protein kinase B (PKB/Akt). In the presence of CD152 signaling, the chemoattractant CCL4 selectively induces the full activation of Akt via phosphorylation at threonine 308 and serine 473 in pro-inflammatory Th lymphocytes expressing the cognate chemokine receptor CCR5. Akt signals lead to cytoskeleton rearrangements, which are indispensable for migration. Therefore, this novel Akt-modulating function of CD152 signals affecting T cell migration demonstrates that boosting CD152 or its down-stream signal transduction could aid therapies aimed at sensitizing T lymphocytes for optimal migration, thus contributing to a precise and effective immune response

    Positional Cloning of a Type 2 Diabetes Quantitative Trait Locus; Tomosyn-2, a Negative Regulator of Insulin Secretion

    Get PDF
    We previously mapped a type 2 diabetes (T2D) locus on chromosome 16 (Chr 16) in an F2 intercross from the BTBR T (+) tf (BTBR) Lepob/ob and C57BL/6 (B6) Lepob/ob mouse strains. Introgression of BTBR Chr 16 into B6 mice resulted in a consomic mouse with reduced fasting plasma insulin and elevated glucose levels. We derived a panel of sub-congenic mice and narrowed the diabetes susceptibility locus to a 1.6 Mb region. Introgression of this 1.6 Mb fragment of the BTBR Chr 16 into lean B6 mice (B6.16BT36–38) replicated the phenotypes of the consomic mice. Pancreatic islets from the B6.16BT36–38 mice were defective in the second phase of the insulin secretion, suggesting that the 1.6 Mb region encodes a regulator of insulin secretion. Within this region, syntaxin-binding protein 5-like (Stxbp5l) or tomosyn-2 was the only gene with an expression difference and a non-synonymous coding single nucleotide polymorphism (SNP) between the B6 and BTBR alleles. Overexpression of the b-tomosyn-2 isoform in the pancreatic β-cell line, INS1 (832/13), resulted in an inhibition of insulin secretion in response to 3 mM 8-bromo cAMP at 7 mM glucose. In vitro binding experiments showed that tomosyn-2 binds recombinant syntaxin-1A and syntaxin-4, key proteins that are involved in insulin secretion via formation of the SNARE complex. The B6 form of tomosyn-2 is more susceptible to proteasomal degradation than the BTBR form, establishing a functional role for the coding SNP in tomosyn-2. We conclude that tomosyn-2 is the major gene responsible for the T2D Chr 16 quantitative trait locus (QTL) we mapped in our mouse cross. Our findings suggest that tomosyn-2 is a key negative regulator of insulin secretion

    Observation of B(s)0→J/ψpp¯ decays and precision measurements of the B(s)0 masses

    Get PDF
    The first observation of the decays B 0 ( s ) → J / ψ p ¯ p is reported, using proton-proton collision data corresponding to an integrated luminosity of 5.2     fb − 1 , collected with the LHCb detector. These decays are suppressed due to limited available phase space, as well as due to Okubo-Zweig-Iizuka or Cabibbo suppression. The measured branching fractions are B ( B 0 → J / ψ p ¯ p ) = [ 4.51 ± 0.40 ( stat ) ± 0.44 ( syst ) ] × 10 − 7 , B ( B 0 s → J / ψ p ¯ p ) = [ 3.58 ± 0.19 ( stat ) ± 0.39 ( syst ) ] × 10 − 6 . For the B 0 s meson, the result is much higher than the expected value of O ( 10 − 9 ) . The small available phase space in these decays also allows for the most precise single measurement of both the B 0 mass as 5279.74 ± 0.30 ( stat ) ± 0.10 ( syst )     MeV and the B 0 s mass as 5366.85 ± 0.19 ( stat ) ± 0.13 ( syst )     MeV

    Observation of the decay Λ <sub>b</sub> <sup>0</sup>  → ψ(2S)pπ<sup>−</sup>

    Get PDF
    International audienceThe Cabibbo-suppressed decay Λb0_{b}^{0}  → ψ(2S)pπ^{−} is observed for the first time using a data sample collected by the LHCb experiment in proton-proton collisions corresponding to 1.0, 2.0 and 1.9 fb1^{−1} of integrated luminosity at centre-of-mass energies of 7, 8 and 13 TeV, respectively. The ψ(2S) mesons are reconstructed in the μ+^{+}μ^{−} final state. The branching fraction with respect to that of the Λb0_{b}^{0}  → ψ(2S)pK^{−} decay mode is measured to b

    Evidence for an nc(1S)ff- resonance in B0 yc(1S)K+ decays

    Get PDF
    A Dalitz plot analysis of B0→ηc(1S)K+π- decays is performed using data samples of pp collisions collected with the LHCb detector at centre-of-mass energies of s=7,8 and 13TeV , corresponding to a total integrated luminosity of 4.7fb-1 . A satisfactory description of the data is obtained when including a contribution representing an exotic ηc(1S)π- resonant state. The significance of this exotic resonance is more than three standard deviations, while its mass and width are 4096±20-22+18MeV and 152±58-35+60MeV , respectively. The spin-parity assignments JP=0+ and JP=1- are both consistent with the data. In addition, the first measurement of the B0→ηc(1S)K+π- branching fraction is performed and gives B(B0→ηc(1S)K+π-)=(5.73±0.24±0.13±0.66)×10-4, where the first uncertainty is statistical, the second systematic, and the third is due to limited knowledge of external branching fractions

    The process and lessons of exchanging and managing in-vitro elite germplasm to combat CBSD and CMD in Eastern and Southern Africa

    Get PDF
    Varieties with resistance to both cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) can reverse food and income security threats affecting the rural poor in Eastern and Southern Africa. The International Institute of Tropical Agriculture is leading a partnership of five national (Malawi, Mozambique, Kenya, Tanzania and Uganda) cassava breeding programs to exchange the most elite germplasm resistant to both CMD and CBSD. This poster documents the process and the key learning lessons. Twenty to 25 stem cuttings of 31 clones comprising of 25 elite clones (5 per country), two standard checks (Kibandameno from Kenya and Albert from Tanzania), and four national checks (Kiroba and Mkombozi from Tanzania, Mbundumali from Malawi, and Tomo from Mozambique) were cleaned and indexed for cassava viruses at both the Natural Resources Institute in the United Kingdom and Kenya Plant Health Inspectorate Services, in Kenya. About 75 in-vitro plantlets per clone were sent to Genetic Technologies International Limited, a private tissue culture lab in Kenya, and micro-propagated to ≥1500 plantlets. Formal procedures of material transfer between countries including agreements, import permission and phytosanitary certification were all ensured for germplasm exchange. At least 300 plantlets of each elite and standard check clones were sent to all partner countries, while the national checks were only sent to their respective countries of origin. In each country, the in-vitro plantlets were acclimatized under screen house conditions and transplanted for field multiplication as a basis for multi-site testing. Except for Tomo, a susceptible clone, all the clones were cleaned of the viruses. However, there was varied response to the cleaning process between clones, e.g. FN-19NL, NASE1 and Kibandameno responded slowly. Also, clones responded differently to micro-propagation protocols at GTIL, e.g. Pwani, Tajirika, NASE1, TME204 and Okhumelela responded slowly. Materials are currently being bulked at low disease pressure field sites in preparation for planting at 5-8 evaluation sites per country. The process of cleaning, tissue culture mass propagation, exchange and local hardening off/bulking has been successful for the majority of target varieties. Two key lessons derived from the process are that adequate preparations of infrastructure and trained personnel are required to manage the task, and that a small proportion of varieties are recalcitrant to tissue culture propagation
    corecore