158 research outputs found
CSF evidence of pericyte damage in Alzheimer's disease is associated with markers of blood-brain barrier dysfunction and disease pathology
BACKGROUND: We aimed to assess the relationship between levels of a cerebrospinal fluid (CSF) marker of pericyte damage, soluble platelet-derived growth factor receptor β (sPDGFRβ) and CSF markers of blood-brain barrier (BBB) integrity (CSF albumin and CSF/serum albumin ratio) and disease pathology (reduced CSF Aβ42 and elevated CSF total and phosphorylated tau) in Alzheimer’s disease (AD). METHODS: sPDGFRβ and albumin were measured by sandwich ELISA in ante-mortem CSF from 39 AD and 39 age-matched controls that were grouped according to their biomarker profile (i.e. AD cases t-tau > 400 pg/mL, p-tau > 60 pg/mL and Aβ42 < 550 pg/mL). sPDGFRβ was also measured in matched serum and CSF samples (n = 23) in a separate neurologically normal group for which the CSF/serum albumin ratio had been determined. RESULTS: CSF sPDGFRβ level was significantly increased in AD (p = 0.0038) and correlated positively with albumin (r = 0.45, p = 0.007), total tau (r = 0.50, p = 0.0017) and phosphorylated tau (r = 0.41, p = 0.013) in AD but not in controls. CSF sPDGFRβ did not correlate with Aβ42. Serum and CSF sPDGFRβ were positively correlated (r = 0.547, p = 0.0085) in the independent neurologically normal CSF/serum matched samples. CONCLUSIONS: We provide further evidence of an association between pericyte injury and BBB breakdown in AD and novel evidence that a CSF marker of pericyte injury is related to the severity of AD pathology
Cerebrospinal Fluid Changes in the Renin-Angiotensin System in Alzheimer's Disease
Observations in autopsied brain tissue indicate that overactivation of the classical renin-angiotensin system (cRAS) and underactivity within regulatory RAS pathways (rRAS) are associated with pathology in Alzheimer’s disease (AD). The primary aim of this study was to investigate whether cerebrospinal fluid (CSF) markers of RAS are altered in AD in relation to established CSF markers of disease pathology (lower Aβ42 and elevated tau) and CSF markers of capillary dysfunction. We studied 40 controls and 40 AD cases grouped according to a biomarker profile (i.e., AD cases t-tau>400 pg/mL, pTau >60 pg/mL, and Aβ42 <550 pg/mL). Angiotensin-II converting enyme-1 (ACE1) and ACE2 enzyme activity was measured using fluorogenic peptide substrates; sPDGFRβ and albumin level by sandwich ELISA; and angiotensin-I (Ang-I), Ang-II, and Ang-(1-7) by direct ELISA. CSF Aβ42, total, and phosphorylated tau levels were previously measured by INNOTEST sandwich ELISA. CSF ACE1 activity was significantly elevated in AD (p = 0.008) and positively correlated with ACE2 in AD (r = 0.420, p = 0.007). CSF ACE1 weakly correlated with t-tau (r = 0.294, p = 0.066) and p-tau (r = 0.329, p = 0.038) but not with Aβ42 in the controls but not in AD. ACE1 correlated positively with sPDGFRβ (r = 0.426, p = 0.007), a marker of pericyte injury, and ACE2 correlated positively with albumin (r = 0.422, p = 0.008), a marker of blood-brain barrier integrity. CSF Ang-I, Ang-II, and Ang-(1-7) levels were unchanged in AD. This cross-sectional CSF study indicates RAS dysfunction in relation to capillary damage in
Increased HIV Incidence in Men Who Have Sex with Men Despite High Levels of ART-Induced Viral Suppression: Analysis of an Extensively Documented Epidemic
Background: There is interest in expanding ART to prevent HIV transmission, but in the group with the highest levels of ART use, men-who-have-sex-with-men (MSM), numbers of new infections diagnosed each year have not decreased as ART coverage has increased for reasons which remain unclear.
Methods: We analysed data on the HIV-epidemic in MSM in the UK from a range of sources using an individual-based simulation model. Model runs using parameter sets found to result in good model fit were used to infer changes in HIV-incidence and risk behaviour.
Results: HIV-incidence has increased (estimated mean incidence 0.30/100 person-years 1990–1997, 0.45/100 py 1998–2010), associated with a modest (26%) rise in condomless sex. We also explored counter-factual scenarios: had ART not been introduced, but the rise in condomless sex had still occurred, then incidence 2006–2010 was 68% higher; a policy of ART initiation in all diagnosed with HIV from 2001 resulted in 32% lower incidence; had levels of HIV testing been higher (68% tested/year instead of 25%) incidence was 25% lower; a combination of higher testing and ART at diagnosis resulted in 62% lower incidence; cessation of all condom use in 2000 resulted in a 424% increase in incidence. In 2010, we estimate that undiagnosed men, the majority in primary infection, accounted for 82% of new infections.
Conclusion: A rise in HIV-incidence has occurred in MSM in the UK despite an only modest increase in levels of condomless sex and high coverage of ART. ART has almost certainly exerted a limiting effect on incidence. Much higher rates of HIV testing combined with initiation of ART at diagnosis would be likely to lead to substantial reductions in HIV incidence. Increased condom use should be promoted to avoid the erosion of the benefits of ART and to prevent other serious sexually transmitted infections
Post-mortem assessment in vascular dementia: advances and aspirations.
BACKGROUND: Cerebrovascular lesions are a frequent finding in the elderly population. However, the impact of these lesions on cognitive performance, the prevalence of vascular dementia, and the pathophysiology behind characteristic in vivo imaging findings are subject to controversy. Moreover, there are no standardised criteria for the neuropathological assessment of cerebrovascular disease or its related lesions in human post-mortem brains, and conventional histological techniques may indeed be insufficient to fully reflect the consequences of cerebrovascular disease. DISCUSSION: Here, we review and discuss both the neuropathological and in vivo imaging characteristics of cerebrovascular disease, prevalence rates of vascular dementia, and clinico-pathological correlations. We also discuss the frequent comorbidity of cerebrovascular pathology and Alzheimer's disease pathology, as well as the difficult and controversial issue of clinically differentiating between Alzheimer's disease, vascular dementia and mixed Alzheimer's disease/vascular dementia. Finally, we consider additional novel approaches to complement and enhance current post-mortem assessment of cerebral human tissue. CONCLUSION: Elucidation of the pathophysiology of cerebrovascular disease, clarification of characteristic findings of in vivo imaging and knowledge about the impact of combined pathologies are needed to improve the diagnostic accuracy of clinical diagnoses
The Pathway Coexpression Network: Revealing pathway relationships.
A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer's Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/
Amyloid and tau in the brain in sporadic Alzheimer's disease: defining the chicken and the egg
In the October 2013 issue of Acta Neuropathologica there were three very interesting articles on: Amyloid or tau: the chicken or the egg? In the first article, David Mann and John Hardy argued that the deposition of aggregated amyloid β (Aβ) protein in the brain is a primary driving force behind the pathogenesis of Alzheimer’s disease with tau pathology following as a consequential or at least a secondary event. In the communication that followed, Braak and Del Tredici presented the contrary argument with accumulation of tau protein as the primary event in sporadic Alzheimer’s disease. Attems and Jellinger questioned the concept of a chicken and egg and suggested that the majority of cases of age-associated dementia are not caused by one single primary pathological mechanism
RNA Oxidation Adducts 8-OHG and 8-OHA Change with Aβ42 Levels in Late-Stage Alzheimer's Disease
While research supports amyloid-β (Aβ) as the etiologic agent of Alzheimer's disease (AD), the mechanism of action remains unclear. Evidence indicates that adducts of RNA caused by oxidation also represent an early phenomenon in AD. It is currently unknown what type of influence these two observations have on each other, if any. We quantified five RNA adducts by gas chromatography/mass spectroscopy across five brain regions from AD cases and age-matched controls. We then used a reductive directed analysis to compare the RNA adducts to common indices of AD neuropathology and various pools of Aβ. Using data from four disease-affected brain regions (Brodmann's Area 9, hippocampus, inferior parietal lobule, and the superior and middle temporal gyri), we found that the RNA adduct 8-hydroxyguanine (8-OHG) decreased, while 8-hydroxyadenine (8-OHA) increased in AD. The cerebellum, which is generally spared in AD, did not show disease related changes, and no RNA adducts correlated with the number of plaques or tangles. Multiple regression analysis revealed that SDS-soluble Aβ42 was the best predictor of changes in 8-OHG, while formic acid-soluble Aβ42 was the best predictor of changes in 8-OHA. This study indicates that although there is a connection between AD related neuropathology and RNA oxidation, this relationship is not straightforward
Evaluating the relationship between amyloid-β and α-synuclein phosphorylated at Ser129 in dementia with Lewy bodies and Parkinson’s disease
INTRODUCTION: Lewy body and Alzheimer-type pathologies often co-exist. Several studies suggest a synergistic relationship between amyloid-β (Aβ) and α-synuclein (α-syn) accumulation. We have explored the relationship between Aβ accumulation and the phosphorylation of α-syn at serine-129 (pSer129 α-syn), in post-mortem human brain tissue and in SH-SY5Y neuroblastoma cells transfected to overexpress human α-syn. METHODS: We measured levels of Aβ40, Aβ42, α-syn and pSer129 α-syn by sandwich enzyme-linked immunosorbent assay, in soluble and insoluble fractions of midfrontal, cingulate and parahippocampal cortex and thalamus, from cases of Parkinson’s disease (PD) with (PDD; n = 12) and without dementia (PDND; n = 23), dementia with Lewy bodies (DLB; n = 10) and age-matched controls (n = 17). We also examined the relationship of these measurements to cognitive decline, as measured by time-to-dementia and the mini-mental state examination (MMSE) score in the PD patients, and to Braak tangle stage. RESULTS: In most brain regions, the concentration of insoluble pSer129 α-syn correlated positively, and soluble pSer129 α-syn negatively, with the levels of soluble and insoluble Aβ. Insoluble pSer129 α-syn also correlated positively with Braak stage. In most regions, the levels of insoluble and soluble Aβ and the proportion of insoluble α-syn that was phosphorylated at Ser129 were significantly higher in the PD and DLB groups than the controls, and higher in the PDD and DLB groups than the PDND brains. In PD, the MMSE score correlated negatively with the level of insoluble pSer129 α-syn. Exposure of SH-SY5Y cells to aggregated Aβ42 significantly increased the proportion of α-syn that was phosphorylated at Ser129 (aggregated Aβ40 exposure had a smaller, non-significant effect). CONCLUSIONS: Together, these data show that the concentration of pSer129 α-syn in brain tissue homogenates is directly related to the level of Aβ and Braak tangle stage, and predicts cognitive status in Lewy body diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13195-014-0077-y) contains supplementary material, which is available to authorized users
Hypoxia-Induced Down-Regulation of Neprilysin by Histone Modification in Mouse Primary Cortical and Hippocampal Neurons
Amyloid β-peptide (Aβ) accumulation leads to neurodegeneration and Alzheimer's disease (AD). Aβ metabolism is a dynamic process in the Aβ production and clearance that requires neprilysin (NEP) and other enzymes to degrade Aβ. It has been reported that NEP expression is significantly decreased in the brain of AD patients. Previously we have documented hypoxia is a risk factor for Aβ generation in vivo and in vitro through increasing Aβ generation by altering β-cleavage and γ-cleavage of APP and down-regulating NEP, and causing tau hyperphosphorylation. Here, we investigated the molecular mechanisms of hypoxia-induced down-regulation of NEP. We found a significant decrease in NEP expression at the mRNA and protein levels after hypoxic treatment in mouse primary cortical and hippocampal neurons. Chromatin immunoprecipitation (ChIP) assays and relative quantitative PCR (q-PCR) revealed an increase of histone H3-lysine9 demethylation (H3K9me2) and a decrease of H3 acetylation (H3-Ace) in the NEP promoter regions following hypoxia. In addition, we found that hypoxia caused up-regulation of histone methyl transferase (HMT) G9a and histone deacetylases (HDACs) HDAC-1. Decreased expression of NEP during hypoxia can be prevented by application with the epigenetic regulators 5-Aza-2′-deoxycytidine (5-Aza), HDACs inhibitor sodium valproate (VA), and siRNA-mediated knockdown of G9a or HDAC1. DNA methylation PCR data do not support that hypoxia affects the methylation of NEP promoters. This study suggests that hypoxia may down-regulate NEP by increasing H3K9me2 and decreasing H3-Ace modulation
Individualized Cost-Effectiveness Analysis
John Ioannidis and Alan Garber discuss how to use incremental cost-effectiveness ratios (ICER) and related metrics so they can be useful for decision-making at the individual level, whether used by clinicians or individual patients
- …
