94 research outputs found

    Effect of base–acid properties of the mixtures of water with methanol on the solution enthalpy of selected cyclic ethers in this mixture at 298.15 K

    Get PDF
    The enthalpies of solution of cyclic ethers: 1,4- dioxane, 12-crown-4 and 18-crown-6 in the mixture of water and methanol have been measured within the whole mole fraction range at T = 298.15 K. Based on the obtained data, the effect of base–acid properties of water– methanol mixtures on the solution enthalpy of cyclic ethers in these mixtures has been analyzed. The solution enthalpy of cyclic ethers depends on acid properties of water– methanol mixtures in the range of high and medium water contents in the mixture. Based on the analysis performed, it can be assumed that in the mixtures of high methanol contents, cyclic ethe

    Renal cancer associated with recurrent spontaneous pneumothorax in Birt-Hogg-Dubé syndrome: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Birt-Hogg-Dubé syndrome is a rare genodermatosis characterized by hair follicle hamartomas, renal tumors and spontaneous pneumothorax. We present the case of a patient with pulmonary cysts and recurrent spontaneous pneumothorax. She had typical skin lesions, and was found to have a hybrid oncocytoma which was surgically excised.</p> <p>Case presentation</p> <p>A 60-year-old Caucasian woman had a 10-year history of cystic lung disease and recurrent spontaneous pneumothoraces. She was noted to have papular lesions over her face and forehead. The result of a biopsy showed these lesions to be fibrofolliculomas. A diagnosis of Birt-Hogg-Dubé syndrome was made and she was screened for renal tumors since these are a recognized association. A hybrid oncocytoma was detected which was surgically excised by partial nephrectomy.</p> <p>Conclusion</p> <p>It is important to consider a possible diagnosis of Birt-Hogg-Dubé syndrome in cases of recurrent pneumothorax. Affected individuals must be screened for renal tumors, a potentially lethal consequence of this syndrome.</p

    Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations

    Get PDF
    © The Author(s) 2019.Metallic nanoparticles have unique antimicrobial properties that make them suitable for use within medical and pharmaceutical devices to prevent the spread of infection in healthcare. The use of nanoparticles in healthcare is on the increase with silver being used in many devices. However, not all metallic nanoparticles can target and kill all disease-causing bacteria. To overcome this, a combination of several different metallic nanoparticles were used in this study to compare effects of multiple metallic nanoparticles when in combination than when used singly, as single elemental nanoparticles (SENPs), against two common hospital acquired pathogens (Staphylococcus aureus and Pseudomonas. aeruginosa). Flow cytometry LIVE/DEAD assay was used to determine rates of cell death within a bacterial population when exposed to the nanoparticles. Results were analysed using linear models to compare effectiveness of three different metallic nanoparticles, tungsten carbide (WC), silver (Ag) and copper (Cu), in combination and separately. Results show that when the nanoparticles are placed in combination (NPCs), antimicrobial effects significantly increase than when compared with SENPs (P < 0.01). This study demonstrates that certain metallic nanoparticles can be used in combination to improve the antimicrobial efficiency in destroying morphologically distinct pathogens within the healthcare and pharmaceutical industry.Peer reviewe

    Gene promoter hypermethylation in ductal lavage fluid from healthy BRCA gene mutation carriers and mutation-negative controls

    Get PDF
    INTRODUCTION: Female germline BRCA gene mutation carriers are at increased risk for developing breast cancer. The purpose of our study was to establish whether healthy BRCA mutation carriers demonstrate an increased frequency of aberrant gene promoter hypermethylation in ductal lavage (DL) fluid, compared with predictive genetic test negative controls, that might serve as a surrogate marker of BRCA1/2 mutation status and/or breast cancer risk. METHODS: The pattern of CpG island hypermethylation within the promoter region of a panel of four genes (RAR-β, HIN-1, Twist and Cyclin D2) was assessed by methylation-specific polymerase chain reaction using free DNA extracted from DL fluid. RESULTS: Fifty-one DL samples from 24 healthy women of known BRCA mutation status (7 BRCA1 mutation carriers, 12 BRCA2 mutation carriers and 5 controls) were available for methylation analysis. Eight of 19 (42.1%) BRCA mutation carriers were found to have at least one hypermethylated gene in the four-gene panel. Two BRCA mutation carriers, in whom aberrant methylation was found, also had duct epithelial cell atypia identified. No hypermethylation was found in DL samples from 5 negative controls(p = 0.13). CONCLUSION: We found substantial levels of aberrant methylation, with the use of a four-gene panel, in the fluid from the breasts of healthy BRCA mutation carriers compared with controls. Methylation analysis of free DNA in DL fluid may offer a useful surrogate marker for BRCA1/2 mutation status and/or breast cancer risk. Further studies are required for the evaluation of the specificity and predictive value of aberrant methylation in DL fluid for future breast cancer development in BRCA1/2 mutation carriers

    Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) was used to determine optical properties of pelleted human fibroblasts in which necrosis or apoptosis had been induced. We analysed the OCT data, including both the scattering properties of the medium and the axial point spread function of the OCT system. The optical attenuation coefficient in necrotic cells decreased from 2.2 ± 0.3 mm−1 to 1.3 ± 0.6 mm−1, whereas, in the apoptotic cells, an increase to 6.4 ± 1.7 mm−1 was observed. The results from cultured cells, as presented in this study, indicate the ability of OCT to detect and differentiate between viable, apoptotic, and necrotic cells, based on their attenuation coefficient. This functional supplement to high-resolution OCT imaging can be of great clinical benefit, enabling on-line monitoring of tissues, e.g. for feedback in cancer treatment

    Pseudorotaxanes and Rotaxanes Formed by Viologen Derivatives

    Get PDF
    Dibenzyl-4,4-bipyridinium (BIPY2+) bis(hexafluorophosphate) and three of its derivatives – disubstituted at the para positions of the benzyl groups with CO2Me, F, and Me in turn – have been shown to form 1:1 complexes that are [2]pseudorotaxanes with dibenzo[24]crown-8 (DB24C8), benzometaphenylene[25]crown-8 (BMP25C8), and dipyrido[24]crown-8 (DP24C8) in CD3CN solution by 1H NMR spectroscopy and in one case in the solid state by X-ray crystallography. Binding constants (Ka) for all of these 1:1 complexes, which were determined both (1) by isothermal titration calorimetry in MeCN solution and (2) by the 1H NMR spectroscopic single-point method in CD3CN solution, were found to be, on the average, an order of magnitude less than the Ka values obtained for DB24C8 and DP24C8 with dibenzylammonium (DBA+) hexafluorophosphate and three of its derivatives, also disubstituted at the para positions of the benzyl groups with CO2Me, F and Me. In the case of BMP25C8, however, the Ka values with both categories (BIPY2+ and DBA+) of guests are much of a muchness, being both small and error prone. The equilibrium thermodynamics for these small libraries of [2]pseudorotaxanes indicate that the best bistable [2]rotaxanes incorporating both DBA+ and BIPY2+ recognition sites are going to involve ester functions in their dumbbell components and will employ DP24C8 or, failing that, DB24C8 as the ring component. The BIPY2+ threads also directed the templated assembly of [2]rotaxanes incorporating the crown ethers (DB24C8, DP24C8, and BMP25C8) and triphenylphosphonium stoppers using the threading followed by stoppering approach. The rotaxanes were characterized in solution by 1H NMR spectroscopy, and in one case, in the solid state by X-ray crystallography

    100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care — Preliminary Report

    Get PDF
    BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.)

    Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.

    Get PDF
    We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.352
    corecore