27 research outputs found

    Panel 6 : Vaccines

    Get PDF
    Objective. To review the literature on progress regarding (1) effectiveness of vaccines for prevention of otitis media (OM) and (2) development of vaccine antigens for OM bacterial and viral pathogens. Data Sources. PubMed database of the National Library of Science. Review Methods. We performed literature searches in PubMed for OM pathogens and candidate vaccine antigens, and we restricted the searches to articles in English that were published between July 2011 and June 2015. Panel members reviewed literature in their area of expertise. Conclusions. Pneumococcal conjugate vaccines (PCVs) are somewhat effective for the prevention of pneumococcal OM, recurrent OM, OM visits, and tympanostomy tube insertions. Widespread use of PCVs has been associated with shifts in pneumococcal serotypes and bacterial pathogens associated with OM, diminishing PCV effectiveness against AOM. The 10-valent pneumococcal vaccine containing Haemophilus influenzae protein D (PHiD-CV) is effective for pneumococcal OM, but results from studies describing the potential impact on OM due to H influenzae have been inconsistent. Progress in vaccine development for H influenzae, Moraxella catarrhalis, and OM-associated respiratory viruses has been limited. Additional research is needed to extend vaccine protection to additional pneumococcal serotypes and other otopathogens. There are likely to be licensure challenges for protein-based vaccines, and data on correlates of protection for OM vaccine antigens are urgently needed. Implications for Practice. OM continues to be a significant health care burden globally. Prevention is preferable to treatment, and vaccine development remains an important goal. As a polymicrobial disease, OM poses significant but not insurmountable challenges for vaccine development.Peer reviewe

    De novo design of a biologically active amyloid

    Get PDF
    Most human proteins possess amyloidogenic segments, but only about 30 are associated with amyloid-associated pathologies, and it remains unclear what determines amyloid toxicity. We designed vascin, a synthetic amyloid peptide, based on an amyloidogenic fragment of vascular endothelial growth factor receptor 2 (VEGFR2), a protein that is not associated to amyloidosis. Vascin recapitulates key biophysical and biochemical characteristics of natural amyloids, penetrates cells, and seeds the aggregation of VEGFR2 through direct interaction. We found that amyloid toxicity is observed only in cells that both express VEGFR2 and are dependent on VEGFR2 activity for survival. Thus, amyloid toxicity here appears to be both protein-specific and conditional—determined by VEGFR2 loss of function in a biological context in which target protein function is essential.This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Framework Programme, ERC grant agreement 647458 (MANGO) to J.S. The Switch Laboratory was supported by grants from VIB, Industrial Research Funds of KU Leuven (IOF), the Funds for Scientific Research Flanders (FWO), the Flanders Institute for Science and Technology (IWT), and the Federal Office for Scientific Affairs of Belgium (Belspo), IUAP P7/16. G.V.V., F.D.S., and F.C. were supported by postdoctoral fellowships of FWO. G.V.V. was also supported by KU Leuven competitive funding (PF/10/014). L.Y. is funded by a Wellcome Trust Institutional Strategic Support Fund (ISSF) (grant 015615/Z/14/Z). The Synapt high-definition mass spectroscopy mass spectrometer was purchased with funds from the Biotechnology and Biological Sciences Research Council through its Research Equipment Initiative scheme (BB/E012558/1). The Linköping University laboratories were supported by The Göran Gustafsson Foundation, The Swedish Research Council, and The Swedish Alzheimer Foundation. P.C. was supported by FWO, Methusalem funding by the Flemish government, and an AXA Research grant. M.K. is supported by a Marie Skłodowska-Curie Individual Fellowship under the European Union’s Horizon 2020 Framework Programme (grant H2020-MSCA-IF-2014-ST). C.V. was supported by the KU Leuven Stem Cell Programme. F.R. and J.S. are inventors on patent applications WO2007/071789 and WO2012/123419 submitted by VIB vzw, Belgium, that covers the use of targeted protein aggregation for therapeutic or biotechnological applications

    Pseudomonas aeruginosa Population Structure Revisited

    Get PDF
    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P. aeruginosa “core lineage” and typically exhibited the exoS+/exoU− genotype and group B oprL and oprD alleles. This is to our knowledge the first report of an MST analysis conducted on a polyphasic data set

    Molecular and Evolutionary Bases of Within-Patient Genotypic and Phenotypic Diversity in Escherichia coli Extraintestinal Infections

    Get PDF
    Although polymicrobial infections, caused by combinations of viruses, bacteria, fungi and parasites, are being recognised with increasing frequency, little is known about the occurrence of within-species diversity in bacterial infections and the molecular and evolutionary bases of this diversity. We used multiple approaches to study the genomic and phenotypic diversity among 226 Escherichia coli isolates from deep and closed visceral infections occurring in 19 patients. We observed genomic variability among isolates from the same site within 11 patients. This diversity was of two types, as patients were infected either by several distinct E. coli clones (4 patients) or by members of a single clone that exhibit micro-heterogeneity (11 patients); both types of diversity were present in 4 patients. A surprisingly wide continuum of antibiotic resistance, outer membrane permeability, growth rate, stress resistance, red dry and rough morphotype characteristics and virulence properties were present within the isolates of single clones in 8 of the 11 patients showing genomic micro-heterogeneity. Many of the observed phenotypic differences within clones affected the trade-off between self-preservation and nutritional competence (SPANC). We showed in 3 patients that this phenotypic variability was associated with distinct levels of RpoS in co-existing isolates. Genome mutational analysis and global proteomic comparisons in isolates from a patient revealed a star-like relationship of changes amongst clonally diverging isolates. A mathematical model demonstrated that multiple genotypes with distinct RpoS levels can co-exist as a result of the SPANC trade-off. In the cases involving infection by a single clone, we present several lines of evidence to suggest diversification during the infectious process rather than an infection by multiple isolates exhibiting a micro-heterogeneity. Our results suggest that bacteria are subject to trade-offs during an infectious process and that the observed diversity resembled results obtained in experimental evolution studies. Whatever the mechanisms leading to diversity, our results have strong medical implications in terms of the need for more extensive isolate testing before deciding on antibiotic therapies

    Antisera Against Certain Conserved Surface-Exposed Peptides of Nontypeable Haemophilus influenzae Are Protective

    Get PDF
    We thank Timothy VanWagoner for bioinformatics support, Huda Mussa for assistance with sequencing and Brett Cole for assistance with animal studies. We thank Arnold Smith for inspiration and persistence in understanding the basic biology of H. flu..The authors gratefully acknowledge the Children’s Hospital Foundation for promoting the Department of Pediatrics Research Infrastructure. The Foundation provided no financial support for this specific project.Nontypeable Haemophilus influenzae (NTHi) cause significant disease, including otitis media in children, exacerbations of chronic obstructive pulmonary disease, and invasive disease in susceptible populations. No vaccine is currently available to prevent NTHi disease. The interactions of NTHi and the human host are primarily mediated by lipooligosaccharide and a complex array of surface-exposed proteins (SEPs) that act as receptors, sensors and secretion systems. We hypothesized that certain SEPs are present in all NTHi strains and that a subset of these may be antibody accessible and represent protective epitopes. Initially we used 15 genomic sequences available in the GenBank database along with an additional 11 genomic sequences generated by ourselves to identify the core set of putative SEPs present in all strains. Using bioinformatics, 56 core SEPs were identified. Molecular modeling generated putative structures of the SEPs from which potential surface exposed regions were defined. Synthetic peptides corresponding to ten of these highly conserved surface-exposed regions were used to raise antisera in rats. These antisera were used to assess passive protection in the infant rat model of invasive NTHi infection. Five of the antisera were protective, thus demonstrating their in vivo antibody accessibility. These five peptide regions represent potential targets for peptide vaccine candidates to protect against NTHi infection.Yeshttp://www.plosone.org/static/editorial#pee
    corecore