61 research outputs found

    Letter to Sonora Dodd from Mrs. Freeman Cogley, Jr., July 31, 1957

    Get PDF
    Letter to Sonora Dodd from Mrs. Freeman Cogley, Jr., with envelope. Mrs. Freeman Cogley, Jr. served as Corresponding Secretary for the Spokane Federation of Women\u27s Organizations.https://digitalcommons.whitworth.edu/fathers-day-correspondence/1156/thumbnail.jp

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Greenland ice sheet surface mass loss: recent developments in observation and modeling

    Get PDF
    Surface processes currently dominate Greenland ice sheet (GrIS) mass loss. We review recent developments in the observation and modelling of GrIS surface mass balance (SMB), published after the July 2012 deadline for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). Since IPCC AR5 our understanding of GrIS SMB has further improved, but new observational and model studies have also revealed that temporal and spatial variability of many processes are still poorly quantified and understood, e.g. bio-albedo, the formation of ice lenses and their impact on lateral meltwater transport, heterogeneous vertical meltwater transport (‘piping’), the impact of atmospheric circulation changes and mixed-phase clouds on the surface energy balance and the magnitude of turbulent heat exchange over rough ice surfaces. As a result, these processes are only schematically or not at all included in models that are currently used to assess and predict future GrIS surface mass loss
    corecore