398 research outputs found

    Euclidean Wormholes in String Theory

    Full text link
    We show that toroidal compactification of type II string theory to six dimensions admits axionic euclidean wormhole solutions. These wormholes can be inserted into AdS3×S3×T4AdS_3 \times S^3 \times T^4 backgrounds, which have a well-defined CFT dual. AdS/CFT duality then suggests that the wormhole solutions cannot be interpreted using α\alpha parameters as originally suggested by Coleman.Comment: 18 pages. ver. 2: typos corrected, references adde

    Correlating low energy impact damage with changes in modal parameters: a preliminary study on composite beams

    Get PDF
    This paper is an experimental study of the effects of multi-site damage on the vibration response of a composite beam damaged by low energy impact. The variation of the modal parameters with different levels of impact energy and density of impact is studied. Specimens are impacted symmetrically in order to induce a global rate of damage. A damage detection tool Damage Index is introduced in order to verify the estimation of damping ratios. Design of Experiments is used to establish the sensitivity of both energy of impact and density of damage. The DOE analysis results (using natural frequency only) indicate that impact energy for 2nd, 3rd and 4th bending modes is the most significant factor contributing to the changes in the modal parameters for this kind of symmetrical dynamic test

    Conformational dependence of the intrinsic acidity of the aspartic acid residue sidechain in N-acetyl-L-aspartic acid-N '-methylamide

    Get PDF
    The sidechain conformational potential energy hypersurfaces (PEHS) for the gamma(L), beta(L), alpha(L), and alpha(D) backbone conformations of N-acetyl-L-aspartate-M-methylamide were generated. Of the 81 possible conformers initially expected for the aspartate residue, only seven were found after geometric optimizations at the B3LYP/6-31G(d) level of theory. No stable conformers could be located in the delta(L), epsilon(L), gamma(D), delta(D), and epsilon(D) backbone conformations. The 'adiabatic' deprotonation energies for the endo and exo forms of N-acetyl-L-aspartic acid-N'-methylamide were calculated by comparing their optimized relative energies against those found for the seven stable conformers of N-acetyl-L-aspartate-N'-methylamide. Sideehain conformational PEHSs were also generated for the estimation of 'vertical' deprotonation energies for both endo and exo forms of N-acetyl-L-aspartic acid-N'-methylamide. All backbone-sidechain (N-H...-O-C) and backbone-backbone (N-(HO)-O-...=C) hydrogen bond interactions were analyzed. A total of two backbone-backbone and four backbone-sidechain interactions were found for N-acetyl-L-aspartate-N'-methylamide. The deprotonated sidechain of N-acetyl-L-aspartate-N'-methylamide may allow the aspartyl residue to form strong hydrogen bond interactions (since it is negatively charged) which may be significant in such processes as protein-ligand recognition and ligand binding. As a primary example, the molecular geometry of the aspartyl residue may be important in peptide folding, such as that. in the RGD tripeptide. (C) 2002 Elsevier science B.V. All rights reserved

    Hawking Radiation as Tunneling through the Quantum Horizon

    Get PDF
    Planck-scale corrections to the black-hole radiation spectrum in the Parikh-Wilczek tunneling framework are calculated. The corrective terms arise from modifications in the expression of the surface gravity in terms of the mass-energy of the black hole-emitted particle system. The form of the new spectrum is discussed together with the possible consequences for the fate of black holes in the late stages of evaporation.Comment: 13 pages; the contents of this paper overlap somewhat with the earlier submissions hep-th/0504188 and gr-qc/0505015; (v2) references added and various cosmetic (but no physics) changes, to appear in JHE

    Of Bounces, Branes and Bounds

    Get PDF
    Some recent studies have considered a Randall-Sundrum-like brane world evolving in the background of an anti-de Sitter Reissner-Nordstrom black hole. For this scenario, it has been shown that, when the bulk charge is non-vanishing, a singularity-free ``bounce'' universe will always be obtained. However, for the physically relevant case of a de Sitter brane world, we have recently argued that, from a holographic (c-theorem) perspective, such brane worlds may not be physically viable. In the current paper, we reconsider the validity of such models by appealing to the so-called ``causal entropy bound''. In this framework, a paradoxical outcome is obtained: these brane worlds are indeed holographically viable, provided that the bulk charge is not too small. We go on to argue that this new finding is likely the more reliable one.Comment: 15 pages, Revtex; references added and very minor change

    On the formation of a Hawking-radiation photosphere around microscopic black holes

    Get PDF
    We show that once a black hole surpasses some critical temperature TcritT_{crit}, the emitted Hawking radiation interacts with itself and forms a nearly thermal photosphere. Using QED, we show that the dominant interactions are bremsstrahlung and electron-photon pair production, and we estimate Tcritme/α5/2T_{crit} \sim m_{e}/\alpha^{5/2}, which when calculated more precisely is found to be TcritT_{crit} \approx 45 GeV. The formation of the photosphere is purely a particle physics effect, and not a general relativistic effect, since the the photosphere forms roughly α4\alpha^{-4} Schwarzschild radii away from the black hole. The temperature TT of the photosphere decreases with distance from the black hole, and the outer surface is determined by the constraint TmeT\sim m_{e} (for the QED case), since this is the point at which electrons and positrons annihilate, and the remaining photons free stream to infinity. Observational consequences are discussed, and it is found that, although the QED photosphere will not affect the Page-Hawking limits on primordial black holes, which is most important for 100MeV black holes, the inclusion of QCD interactions may significantly effect this limit, since for QCD we estimate TcritΛQCDT_{crit}\sim \Lambda_{QCD}. The photosphere greatly reduces possibility of observing individual black holes with temperatures greater than TcritT_{crit}, since the high energy particles emitted from the black hole are processed through the photosphere to a lower energy, where the gamma ray background is much higher. The temperature of the plasma in the photosphere can be extremely high, and this offers interesting possibilities for processes such as symmetry restoration.Comment: Latex, 16 pages, 3 postscript figures, submitted to PRD. Also available at http://fnas08.fnal.gov

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
    corecore