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This paper is an experimental study of the effects of multi-site damage on the vibration 

response of a composite beam damaged by low energy impact. The variation of the modal 

parameters with different levels of impact energy and density of impact is studied. Specimens are 

impacted symmetrically in order to induce a global rate of damage. A damage detection tool 

Damage Index is introduced in order to verify the estimation of damping ratios. Design of 

Experiments is used to establish the sensitivity of both energy of impact and density of damage. The 

DOE analysis results (using natural frequency only) indicate that impact energy for 2nd, 3rd and 4th 

bending modes is the most significant factor contributing to the changes in the modal parameters for 

this kind of symmetrical dynamic test.  

 
Keywords  Damage detection · Vibration measurement · Design of experiments · Composites 
 
 
1 Introduction 

The use of composite materials in structural components has increased dramatically in 

recent years by offering enormous potential and benefits to the aerospace industry and many other 

sectors. However composite laminates are susceptible to delamination from a wide variety of 

sources which include fabrication stress, environmental cyclic loading and foreign object impact 

damage [1-3]. Delamination may lead to severe degradation of the mechanical behavior of 

structures due to loss of structural integrity. The detection of delamination and the study of their 

influences on the mechanical behavior of delaminated composite structures has become an 

important issue in recent times.  Therefore in this article, problems at low impact energy levels are 
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analyzed, which arise before delamination (behavior of the structure being relatively linear).  So the 

aim of this work is to understand the relationship between changes in dynamic parameters (natural 

frequencies and damping ratios) due to impact damage in composite beam specimens at early 

stages.   

The purpose of structural health monitoring systems is to provide information about the 

condition of a structure in terms of reliability and safety before the damage threatens the integrity of 

the structure. So the diagnosis of the damage in structural systems requires an identification of the 

location and type of damage, as well as the quantification of the degree of damage. Therefore, 

several techniques have been used to detect damage in structures. In recent years, structural health 

monitoring using vibration based damage detection has been rapidly expanding and shown to be a 

feasible approach for detecting and locating damage. Doebling et al. [4] gave an overview of the 

vibration based damage detection methods. The main idea behind this technique is that modal 

parameters i.e., frequencies, damping ratios and mode shapes change in a detectable manner due to 

loss of stiffness and mass. Several techniques have been researched for detecting damage in 

composite materials, many of them showing the effectiveness of dynamic response measurements 

in monitoring the health of engineering structures [5-16]. These methods are among the earliest and 

most common, principally because they are simple to implement on any size structure. Structures 

can be excited by ambient energy, an external shaker or embedded actuators. Accelerometers and 

laser vibrometers can be used to monitor the structural dynamic responses. Khoo et al. employed 

different vibration techniques in order to locate damage in structures. They used resonant poles to 

identify the modes, especially those modes that exhibit relatively large pole shifts are believed to be 

affected by damage [17].  S.G. Mattson et al. carried out damage detection based on residuals and 

discussed the phenomenon of false negatives. According to them, false negatives give no indication 

of damage when damage is present. [18].  

The delamination-induced decrease of natural frequencies is one of the most commonly 

practiced approaches in damage detection. Several authors have tried to explain structural damage 
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by changes in natural frequencies. Adams and Cawley [19] localized damage in structure from 

measurements of natural frequencies. Yam et al. [20] showed that with the increase in delamination 

size the natural frequency decreases, by artificially creating a crack and then vibrating the structure 

with the help of an embedded actuator. Giannoccaro [21] studied the effects of fatigue damage on 

modal properties of composite specimens and found a considerable shift towards the left in the 

frequency response functions (FRF) after about 90% of the specimen life. Shang et al. [22] showed 

that the changes in the natural frequencies of spot-welded joint specimens varied non-linearly with 

damage fraction. Arkaduiz [23] found that the presence of a self created delamination reduces the 

natural frequencies of a composite beam when harmonically excited.   

 The introduction of damage into a material generally results in an increase of damping, 

which is related to energy dissipation during dynamic excitation. Therefore, damping has also been 

proposed as a potentially sensitive and attractive damage indicator, though research works related to 

damping are fewer in number than those on natural frequency. The main sources of internal 

damping in a composite material arise from microplastic and viscoelastic phenomena in the matrix 

together with the interface effects between the matrix and the reinforcement [24].  Zhang and 

Hartwig [25] recommended damping in the evaluation of damage process which seemed more 

sensitive than the natural frequencies. Gibson [26] vibration tested composite specimens and found 

that for higher modes damping loss factor measurements are more significant than frequency 

measurements. Similarly, Saravanos and Hopkins [27] experimented on composite beams, and 

showed that the delamination has a more profound effect on modal damping than the natural 

frequencies. Colakoglu [28] showed that the damping factor increased with the number of fatigue 

cycles. Richardson and Mannan [29] found that the loss of stiffness in a structure corresponds to a 

decrease in modal damping frequency combined with an increase in damping. Another way to 

correlate damage with change in dynamic parameters is to use mode shapes. Works of Pandey et al 

can be cited as a first reference in this context [30]. This domain of Structural Health Monitoring 

offers a lot of potential coupled with advanced signal processing tools [31-33].  
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This paper focuses on the correlation of modal parameters and impact damage in composite 

beams from an experimental point of view based on low energy impacts. Nowadays, laser 

vibrometers are employed extensively to measure vibrations instead of accelerometers [34-36]. The 

article is arranged in such a way that first the material and the experimental procedure are presented 

then the experimental results are discussed and finally a design of experiments is carried out on the 

experimental results. A nomenclature for all the symbols used in this article is also provided at the 

end. 

 

2  Material and Specimen 

Resin-containing carbon-fiber/epoxy prepreg of T300/914 is used to fabricate the test 

specimens.  The material is supplied by Hexcel composites, the physical properties are set out in 

Table 1). The specimens are processed in a press. The curing cycle of the laminates is 2h at 180°C 

with a warming-up cycle of 0.5h at 135°C. The laminates are cut into beams using a diamond wheel 

cutter, following the ASTM D3039/D3470 standards.   

 

                 Table 1 Physical properties of carbon/epoxy prepreg T300/914 
 

Properties Symbol Value 
Young’s modulus in fiber direction E1 1.44 106 MPa 
Young’s modulus in transverse direction E2 1.0 105 MPa 
Shear Modulus G12 4.2 103 MPa 
Poisson ratio μ12, μ23, μ31 0.25, 0.3, 0.017 
Volume density ρ 1550 kg/m3 

 

Two types of composite beam specimens are tested in this article. The first ones have a 

thickness of 1.04mm having 8 plies and are discussed under the name of Type 1 specimens, 

whereas the others have a thickness of 3.12mm having 24 plies and are described as Type 2 

specimens. The geometric configurations and lay-up of these two types of specimens are listed in 
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Table 2. The lay-up is chosen as such, in which the delamination is said to have more profound 

effects on the dynamic characteristics [27].    

 

         Table 2 Geometry and lay-up of the two types of composite test specimens 
 

Type 1 Specimens (1.04mm thickness) Type 2 Specimens (3.12mm thickness) 
Length  480 mm Length  480 mm 
Width 50 mm Width 50 mm 
Thickness   1.04 mm Thickness  3.12 mm 
Number of layers (plies) 8 Number of layers (plies) 24 
Thickness of each ply 0.125 mm Thickness of each ply 0.125 mm 
Lay-up [0/90/45/-45]s Lay-up [(0/90/45/-45)3]s 

 

The vibration tests are carried out with two steel masses attached at the ends [39]. The aim 

of putting these masses at the ends is to enhance the difference in the modal parameters between the 

undamaged and the damaged test specimens. The dimensions of these end masses for specimens of 

Type 1 and 2 are listed in Table 3.  

               Table 3 Dimensions of the end masses for the two types of composite test specimens 

End Masses for Type 1 Specimens End Masses for Type 2 Specimens 

Length 50 mm Length 50 mm 
Width 12 mm Width 30 mm 
Thickness 8 mm Thickness 10 mm 
Material Steel Material Steel 

      

3 Experimental Procedure 

 Two types of experiments are carried out in this work. Vibrations tests for measuring the 

dynamic characteristics of the composite test specimens and impact tests in order to create damage 

in the specimens. The experimental procedure for these two types of tests is discussed separately.  

3.1 Vibration Tests 
 

The experimental equipment used to obtain the modal parameters discussed in this paper is 

shown in Figure 1. The experimental set-up is that of a free-free beam excited at its center, based on 

Oberst method [38]. The Oberst method states that a free-free beam excited at its center has the 
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same dynamical behavior as that of a half length cantilever beam. The test specimen is placed at its 

center on a B&K force sensor 8200 which is then assembled on a shaker supplied by Prodera 

having a maximum force of 100N. A fixation system is used to place the test specimens on the force 

sensor. The fixation system and the end masses are glued to the test specimens with a HBM X60 

rapid adhesive. The response displacements are measured with the help of a Laser Vibrometer 

OFV-505 provided by Polytec. The shaker, force sensor and the laser vibrometer are manipulated 

with the help of a data acquisition system supplied by LMS Test Lab.      

 

              

Figure 1  Diagram of the experimental set-up 

 

The center of the test specimens is excited at Point 17 as shown in Figure 2. Burst random 

excitation is used which is a broadband type excitation signal [0-1600 Hz]. The signal is averaged 

10 times for each measurement point. Hanning windows are used for both the output and the input 

signals. The linearity is checked and a high frequency resolution (Δf = 0.25Hz) for precise modal 

parameter estimation is used. Response is measured at 33 points that are symmetrically spaced in 

three rows along the length of the beam (Figure 2). The modal parameters are extracted by a 

frequency domain parameter estimation method (Polymax) integrated in the data acquisition 

system.  
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Figure 2  Composite test specimen with location of damage, excitation and measurement points 

 

3.2 Impact Tests 

A drop tower is employed to carryout the impact tests as shown in Figure 3 and a detailed 

cut away of the drop assembly is shown in Figure 4.  

 
 

                         Figure 3 Arrangement of the test equipment for the impact test  

 

The impactor tip has a hemispherical head with a diameter of 12.7mm. The specimens for 

the impact tests are fixed at all ends in the support system. Different sensors are used to measure 

 7



force, acceleration and the velocity of impact. A force sensor (type 9051A) provided by Kistler is 

placed between the impactor tip and the free falling mass of 2kg (Figure 4). A Kistler accelerometer 

(type 8704B5000) is placed at the top of the main block. The impact velocity is measured with the 

help of an optic sensor having a laser diode. The sensor is positioned in such a way that the main 

block’s grooves pass the laser beam just before the impact. Further details on the impact test 

methodology of this drop tower can be found in the reference [40].    

 

                            

        Figure 4 Detailed cutaway of the drop assembly, the guidance tube and the blocking system  

 

The impact height h between the specimen surface and the impact head is calculated with 

       impact

tip

E
h 1.1

g.m
=                                                                      (1) 

where g is the gravitational constant, mtip is the total weight of the impact head, freefalling 

mass mass, force sensor and the accelerometer which in this case is 2.03 kg and Eimp is the energy 

of impact. The factor 1.1 is to compensate losses due to friction between the guidance tube and the 

drop assembly. The impact parameters for the Type 1 (1.04 mm thickness) and Type 2 (3.12 mm 

thickness) test specimens are listed in Table 4.  
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                                                      Table 4 Impact test parameters  

Beam 
 

Thickness 
 

Energy of 
impact 

 (J) 

Height 
(mm) 

Velocity of 
impact  
(m/s) 

1 1.04 mm 2.5 138 1.59 
2 3.12 mm 3 166 1.74 
3 3.12 mm 4 221 1.98 
4 3.12 mm 7 387 2.64 
5 3.12 mm 8 442 2.83 
6 3.12 mm 9 498 3.07 
7 3.12 mm 10 553 3.24 
Weight of mass + impactor tip + force sensor = 2.03 kg 

  

The composite beam specimens have three states. First one is the undamaged state (UD), the 

second is the damage state due to 4 impacts (D1) and the third is the damage state due to 8 impacts 

(D2). Vibration tests are carried out after each of these three states. A simple case is studied where 

the impact points are chosen as such that the damage is symmetric on both sides of the two axes of 

symmetry. The impact parameters (Table 4) show that the impact energies can be classified into two 

major groups. A low impact energy group comprising of impact energies of 3J and 4J, and a high 

impact energy group with impact energies of  7J to 10J.  

 

4 Results and Discussion 

4.1 Tracking of Poles for Damage Detection 

Modal parameter estimation is a special case of system identification where the a priori 

model of the system is known to be in the form of modal parameters. The identification process 

consists of estimating the modal parameters from frequency response function (FRF) 

measurements. Modal identification uses numerical techniques to separate the contributions of 

individual modes of vibration in measurements such as frequency response functions. Each term of 

the FRF matrix can be represented in terms of pole location and a mode shape. The FRF matrix 

model is represented mathematically by: 
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[ ] [ ] [ ]modes

k 1

R(k) R(k)*
H( )

(j (k ) p(k)) (j (k ) p(k)*)=

⎧ ⎫
ω = +⎨ ω − ω −⎩ ⎭

∑ ⎬       (2) 

The numerator R(k) is the residue of the FRF and is a function of the product between mode 

shape components at all points. The denominator gives the modal frequency and modal damping 

(second term in Equation (2) is the complex conjugate term). The poles p(k), are the roots that 

satisfy this equation and are related to modal frequency and damping as follows: 

p(k) (k ) j (k )= −σ + ω              (3) 

The magnitude of each pole is the undamped natural frequency (ωn). The undamped natural 

frequency (ωn) and the modal damping (σ ) are related to mass, stiffness and damping as follows:   

given by   

2 2
n d

K(k )
M

ω = ω +σ =             (4) 

C2 (k )
M

σ =             (5) 

The effect of physical properties on poles in the complex s-plane is illustrated in Figure 5.  

 

 

 
 

Figure 5 Movement of pole due to mass stiffness and damping effect 
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From Figure 5, it can be observed that a change in stiffness affects only the frequency, while 

changes in mass and structural damping affect both modal damped frequency (ωd) and modal 

damping ( ). For this study, the primary interest is to study the decrease in the modal damped 

frequency (ωd) and the increase in modal damping (

σ

σ ) due to damage in the specimens [29].  

4.2 Significance of End Masses 

As discussed before, the end masses are placed to enhance the difference between the modal 

parameters for the undamaged and the damaged cases. In order to verify this, vibration tests are 

carried out on Beam 1, tested in the intact condition (UD), first without end masses and then with 

the end masses. Then it is impacted at 2.5J first at 4 points (D1) and then at 8 points (D2). After 

each of these two series of impacts on Beam 1, vibration tests are again carried out both with and 

without masses. A comparison of the frequency response functions for the measurement point 5 of 

Beam 1 with and without end masses is shown in Figure 6.   

 

 

 
Figure 6 Comparison of frequency response functions (FRF) of Beam 1 at measurement point 5 for 

the states UD (undamaged), D1 (damaged at 4 impact points) and D2 (damaged at 8 impact points) 

for (a) Beam 1 without end masses and (b) Beam 1 with end masses  
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  From Figure 6, it is clear that the difference in the damped modal frequencies before and 

after impact is greater for the case with end masses. The disadvantage of Type 1 specimens is that, 

the maximum energy for which they can be impacted is 5J. Above this energy level, the impactor 

tip penetrates the specimens creating severe damage (creating a hole). The aim of the impact tests is 

to damage locally the test specimens instead of damaging them globally. Therefore further vibration 

tests have been carried out on Type 2 specimens (3.12 mm thickness).     

4.3 Frequency and Damping Changes 

Frequency and damping changes are studied with the help of bending modes as they have 

the largest amplitudes for the type of test configuration presented in this article. The first three 

bending mode shapes of the composite beam calculated by the Polymax method integrated in LMS 

Test Lab are shown in Figure 7.  

 

  

Figure 7 Mode shapes of composite beam calculated by the Polymax method (a) first bending, (b) 

second bending and (c) third bending 

 

In this section the first bending mode is not studied, because the difference in the damped 

natural frequencies between the damaged states (D1 and D2) and undamaged state (UD) for the first 

mode is very small. For the 2nd and 3rd bending modes, the variation of damped natural frequency as 

a function of the undamaged (UD) and the two damage states (D1 and D2) is presented in Figure 8.   
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Figure 8 Variation of damped natural frequencies with damage states for (a) 2nd bending mode and 

(b) 3rd bending mode : UD is undamaged state, D1 is damaged at 4 points of impact and D2 is 

damaged at 8 points of impacts, for six levels of impact energy for Type 2 specimens.  

 

As discussed before in section 4.1, that damage in the specimens prompts a decrease in 

natural frequencies so from Figure 8, it is clear that the decrease in the natural frequencies in case of 

the high energy group (7, 8, 9 and 10J) is more prominent than that for the low energy group (3J 

and 4J). Beam 4 for the second bending mode (Figure 8a), has a natural frequency lower than that 

of the other beams for the undamaged case (UD) but this is not the case for the third bending mode 

(Figure 8b). This anomaly outlines the inherent possibility of false negatives which can arise due to 

boundary conditions and gives no indication of damage when it is present as discussed in the 

reference [18].  

 

 The shift in the natural frequencies between the undamaged and the damaged cases is more 

prominent at higher frequencies. This is evident in Figure 9, which shows a comparison of the sum 

of the frequency response functions for Beam 7 (impacted at 10J) for the undamaged case (UD), 

damaged at 4 points (D1) and damaged at 8 points (D2). The sum of the FRF can be compared as 

for each beam 33 symmetric measurement points have been chosen and the eight impact points are 

also symmetric on both sides of the two major axes of symmetry. 
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Figure 9 Comparison of the sum of the frequency response functions for Beam 7 for the 

undamaged case (UD), damaged at 4 points (D1) and damaged at 8 points (D2) 

The variation of damped natural frequencies with damping ratios (shift in the s-plane) for 

the Beams 3, 4 and 6 for the 2nd and 3rd bending modes is plotted in Figure 10. 
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Figure 10  Variation of natural frequencies with damping ratio, for an increase in density of 

damage, for (a) 2nd bending mode and (b) 3rd bending mode, for Beam 3 (4J), Beam 4 (7J), Beam 

6 (9J), where (UD) is undamaged state, (D1) damaged at 4 impact points and (D2) damaged at 8 

impact points  

 14



 Figure 10 shows that damping increases whereas the frequency decreases with the increase 

in damage. The increase in damping is more prominent in specimens impacted at 7J and 9J (Beam 4 

and 6) as compared to 4J (Beam 3). So it can be said that the variation of damping ratio validates 

the theoretical reasoning presented in Section 4.1. 

 

4.4 Damage Index Variations 

Another way to explain the changes in modal parameters due to damage is with the help of a 

Damage Index (DI) [37]. The first step is to calculate the integral (Ix) of the amplitude of the 

frequency response functions (FRF) over a defined frequency range (interval) as follows: 

fk int

x
fk int

I H( )
+

−

= ω∫ dω                      (6) 

 

where H(ω) is the frequency response function matrix obtained experimentally, (fk) is the 

damped resonant frequency and (int) is the frequency interval chosen. 

 

 In the second step, the Damage Index is calculated by taking the percentage difference 

between the integrals of the resonance peaks of the FRF at the damaged and the undamaged states. 

In this study, there are two damaged states (D1 and D2) and one undamaged state (UD). So the two 

damage indices are calculated as follows: 

 

            Damage Index for states D1 and UD = 1004
4

×
−

=
Undamaged

x

Undamaged
x

Damaged
x

I

II
DI               (7) 

 Damage Index for states D2 and UD = 1008
8

×
−

=
Undamaged

x

Undamaged
x

Damaged
x

I

II
DI    (8) 

 
 
where Ix

Undamaged, Ix
4Damaged and Ix

8Damaged are the integrals of the resonance peaks of the FRF 

for the undamaged state (UD), damage state D1 (damaged at 4 points) and damage state D2 

(damaged at 8 points) respectively.  
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 For this article, a frequency interval of ± 20Hz (Figure 11) is chosen to calculate the integral 

of the resonance peaks of the FRF. In order to verify the robustness of this method, similar 

calculations have been carried out on frequency intervals of ± 10Hz and ± 40Hz as well. It has been 

observed that if the intervals are changed, the values of the integral (IX) are different but the damage 

index always gives the same results being a ratio.      

 
 

Figure 11  Methodology for the calculation of integral Ix (area under the curve) 
 
 

The percentage increase in damage index is the percentage difference of DI8 and DI4 based 

on Equations (7) and (8) and is calculated as follows:  

% increase in damage index = DI8 DI4 x100
DI8
−⎡⎛ ⎞

⎜ ⎟⎢⎝ ⎠⎣ ⎦

⎤
⎥       (9) 

 

The damage index variation is explained in Figure (12) by plotting the percentage increase 

in damage index calculated from Equation (9) as a function of the first four bending modes. 
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              Figure 12  Variation of percentage of increase in Damage Index as a function of modes 

  

 Figure 12 shows that in case of the low energy impact group (3J and 4J), the percentage 

increase in damage index is between 2% to 13%. But in the cases of high impact energies (7, 8, 9 

and 10J), this percentage ranges from 20% to 60%. Therefore, there is a clear increase in damage 

index with the rise in impact energy levels which corresponds to damage accumulation in the 

composite beam specimens.  

4.5 Comparison between Damping Ratio and Integral of the Resonance Peaks (Ix) 

A comparison between the damping ratio and the integral of the resonance peaks (Ix) is 

carried out because they both describe the shape of the peak in the frequency response. The 

damping ratio and the integral (Ix) calculated by Equation (6) plotted as a function of damped 

natural frequency for the 2nd and 3rd bending modes, for the Beams 3, 4 and 6 is shown in Figure 13.  

The direction of the increase of damage is represented by the increase in marker size for each plot. 

The smallest marker size represents the undamaged state (UD), the medium damage at 4 points 

(D1) and the largest damage at 8 points (D2). 
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      Figure 13 Variation of Damping ratio and Integral (Ix) as a function of frequency for (a) second 

bending mode (b) third bending mode for Beam 3 (4J), Beam 4 (7J), Beam 6 (9J) 

Damping ratio              (4J),           (7J) and          (9J). Integral            (4J),          (7J) and           (9J).  

 

It can be seen from Figure 13, that the variation of damping ratio and the integral of the 

amplitudes of the resonance peaks (Ix) show similar behavior for the same beam specimen which is 

not surprising because they both describe the form of the resonance peaks.  For the other three Type 

2 beams (Beam 2, 5 and 7), the damping ratios estimated by the Polymax method are not stable 

because they do not show an increase with the increase in damage in the specimens. This can be 

attributed to the fact that damping is a phenomenon that is harder to estimate as compared to the 

natural frequency [41,42]. On the other hand, the integral (Ix) values for these three beams (Beam 2, 

5 and 7) increase with the increase in damage in the specimens. This variation of the integral (Ix) 

with the increase in damage for Beam 2, 3 and 5 for the 2nd and 3rd bending modes is plotted in 

Figure 14. As both damping ratio and damage index (based on the integral Ix) explain the same 

phenomenon, therefore the reason for introducing the Damage Index (DI) parameter is to verify the 

damping ratio results estimated by Polymax which are not stable for the case of Beam 2, 3 and 5. In 

using DI, an additional tool is introduced for understanding the damping behavior of damaged 

composite beams.                            
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Figure 14 Variation of Damping ratio and Integral (Ix) as a function of frequency for (a) second 

bending mode (b) third bending mode for Beam 2 (3J), Beam 5 (8J), Beam 7 (10J) 

4.6 Design of Experiments 

 
 Design of experiments is a powerful analysis tool for modeling and analyzing the different 

factors which affect an experimental process and the output of that process. This study is carried out 

on the six Type 2 composite beam specimens with an aim to identify the factors which have the 

most significant effect on the experimental results (natural frequencies). The two factors chosen for 

the design of experiments are the energy of impact and the density of damage. For the energy of 

impact there are six levels (3, 4, 7, 8, 9 and 10J) and for the density of damage there are two levels 

(damage at 4 impact points (D1), damage at 8 impact point (D2)). By keeping in view the levels of 

the two factors, a 6x2 full factorial design is chosen. The results of the design of experiments are 

shown with the help of leverage plots in Figure 15.      
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             Figure 15  Results of Design of Experiments (Leverage plots with confidence curves)  
 
 
 The leverage plots are shown with confidence curves in dotted blue with their respective 

values in blue on the y axis. The horizontal red dotted line shows the current predicted value of each 

Y variable for the current values of the X variables. The black lines show the prediction trace. If the 

confidence curves cross the horizontal red lines, then the effect of that factor is said to be significant 

on the results. If the confidence curves are asymptotic to the horizontal line then the effect of the 

factors is marginally significant and finally if the confidence region between the curves contains the 

horizontal line then the effect is said to be insignificant. The results shown in Figure 14 prove that 

the effects of impact energy are significant on the natural frequencies for the 2nd, 3rd and 4th bending 

modes. The effects of the density of impact are partially significant on these modes as compared to 

the impact energy. However, these two factors have no influence on the natural frequency of the 

first bending mode because the frequency shift between the damaged and the undamaged cases is 

insignificant.  
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5 Conclusion 

 
Dynamic tests have been carried out on pristine and damaged composite beam specimens 

using burst random excitation. The variation of modal parameters with damage is studied with the 

help of changes in natural frequency, damping ratio and damage index. Vibration tests are carried 

out by placing steel masses at the two ends of the composite beams in order to increase the 

difference in modal parameters between the undamaged and the damaged cases. Results show that 

with the accumulation of damage in the specimens, there is a decrease in natural frequency 

accompanied by an increase in the damping ratio. Damage index tool is also used to study the 

changes in the modal parameters before and after impact. Damage index is based on the integral of 

the amplitudes of the frequency response functions (FRF) and therefore estimates the phenomenon 

of dissipation in the specimens. It is seen that the damage index increases with the increase of 

damage in the specimens. Therefore the aim of the damage index is to verify the damping ratio 

results estimated by Polymax and to have an additional tool for understanding the damping behavior 

of damaged composite beams. Finally a design of experiments is carried out on the results of natural 

frequencies. It is verified that the energy of impact is the most significant factor and its increase 

generates a shift in the s-plane.  

 

In the future, similar experiments shall be carried out with sine dwell testing in order to have 

a better estimation of the damping ratio. The Design of Experiments shall also be expanded by 

taking into account some other parameters e.g., size and shape of the impactor head, thickness of 

the specimens and the lay-up of the plies.  
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6 Nomenclature 
   

Type 1 = Composite beam specimens of 1.04 mm thickness 

Type 2 = Composite beam specimens of 3.12 mm thickness 

UD = undamaged state 

D1 = damaged state at 4 points 

D2 = damaged state at 8 points 

h = impact height  

Eimp = energy of impact (J) 

mtip = Total weight of impactor tip + freefalling mass + force sensor + accelerometer

g = gravitational constant 

FRF = Frequency Response Function 

H(ω) = Frequency Response Function matrix  

j = Imaginary axis in the complex plane 

* = Complex conjugate 

ω(k) = Modal damped frequency for kth mode (rad/s) 

p(k) = Pole location for the kth mode 

R(k) = Residue magnitude (FRF/s) 

σ (k) = Modal damping for kth mode 

ωn = Undamped natural frequency (rad/s) 

ωd = Damped natural frequency (rad/s) 

C = Structural damping matrix (force/velocity) 

K = Stiffness matrix (force/displacement) 

M = Mass matrix  

Ix = Integral of the amplitude of the frequency response functions (FRF) 

int = Frequency interval (user defined) (Hz) 

fk = Resonance frequency (Hz) 

DI = Damage Index  

DI4 = Damage Index for states D1 and UD 

DI8 = Damage Index for states D2 and UD 
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