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1. Introduction

It is widely believed that a final word on the so-called “black hole information paradox”

would provide a key ingredient in the search for a yet to be formulated theory of Quantum

Gravity. The paradox relies on the validity of the “no hair” theorem [1] and the fact

that Hawking radiation exhibits a thermal spectrum, i.e. it is characterized by just one

parameter: the black hole temperature [2]. Information carried by a physical system

falling toward a black-hole singularity then has no way to be recovered. This would allow,

for example, a pure quantum state to evolve into a mixed one, thus violating the unitarity

of evolution in Quantum Mechanics [3]. The answer to the question of whether or not

this violation occurs will deeply characterize the way in which Quantum Mechanics and

General Relativity would emerge as limits of the Quantum Gravity theory in regimes far

from the Planck scale.

Many proposals have been made in the attempt to save the basic principles of Quan-

tum Mechanics in the presence of black holes (for reviews see [4 – 7]). Among these, the

idea that information lost behind the horizon might re-emerge via the Hawking radiation

seems particularly interesting. In fact in the late stages of evaporation the usual picture

for the emission process will lose its validity and effects due to gravitational back-reaction

should be taken into account. These “self-gravitation” effects were studied in [8, 9] and

later in [10 – 12] (also see, e.g., [13 – 15]). In particular Parikh and Wilczek [10] showed how

the inclusion of back-reaction effects, which ensures energy conservation during the emis-

sion of a particle via tunneling through the horizon, leads to non-thermal corrections to the

black-hole radiation spectrum. However the form of the correction the authors find is such

that no statistical correlation between quanta emitted with different energies appears [12].

– 1 –
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In this letter we proceed a step further and modify the Parikh-Wilczek tunneling

picture using a typical Planck-scale modification for the near-horizon emission process.

The type of modification we consider is directly related to the logarithmic corrective term

appearing in the Bekenstein-Hawking entropy-area relation from the direct count of black

hole micro-states in String Theory and Loop Quantum Gravity [16 – 20]. Moreover, the

logarithmic correction has been substantiated in a variety of different contexts (see [22]

for a list of relevant citations). For instance, in [23] (also see [24]) it is showed how this

corrective term can be also derived from a general form of deformed energy-momentum

dispersion relation which emerges in various models of Planck scale departures from Lorentz

symmetry.

It might have been hoped that, when back-reaction effects are combined with Planck-

scale corrections, one would observe the appearance of correlations between the probability

of emission of different modes in the black-hole radiation spectrum.

Unfortunately, even with the inclusion of the Quantum Gravity corrections, no such

correlations are conclusively in evidence. One does find, however, that (given a certain

constraint to be discussed below) the probability of emission of a particle approaches zero

when its energy becomes of the order of the mass of the emitting black hole. This is a novel

feature of our analysis that was not present in the “semiclassical” treatment of [10 – 12].

In the next sections we briefly review how the motion of a classical spherical shell in a

Schwarzschild geometry is modified in the presence of gravitational back-reaction and the

way this is used to compute corrections to the black-hole emission spectrum. In section III

we review how these effects were described by Parikh and Wilczek in terms of quantum

tunneling through the black hole horizon. In section IV we discuss a possible role of the

Quantum Gravity correction to the entropy-area law for the non-thermal spectrum and

its consequences for the escape of information via Hawking radiation. In section V we

propose a modified version of the tunneling picture in which Planck-scale corrections are

introduced and obtain a black hole emission spectrum in which both back-reaction and

Quantum Gravity effects are present. We then illustrate the formalism with a specific

example (section VI), which is followed by some concluding remarks (section VII).

2. Motion of a self-gravitating spherical shell in a Schwarzschild geometry

We summarize here the results of [8] where the corrections to the geodesic motion of a

spherical shell due to self-gravitation in a Schwarzschild geometry were calculated. We

start by writing the metric for a general spherically symmetric system in ADM form

ds2 = −Nt(t, r)
2dt2 + L(t, r)2[dr + Nr(t, r)dt]2 + R(t, r)2dΩ2 . (2.1)

The action for the black hole plus the emitted shell system is

S =
1

16π

∫

d4x
√−gR− m

∫

dt

√

(N̂ t)2 − (L̂r)2( ˙̂r + N̂ r)2 + boundary terms , (2.2)

where r̂ is the shell radius and the other quantities under “ˆ” are evaluated at the shell

through ĝµν = gµν(t̂, r̂). The above action can be written in hamiltonian form where all

– 2 –
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the canonically conjugate momenta appear. Since the system has only one effective degree

of freedom the idea is to solve the constraints of the theory in order to eliminate the

dependence of the action from all the momenta but the one conjugate to the shell radius.

This remaining degree of freedom can be expressed in terms of the total mass/energy of

the system and it is obviously related to the position of the shell. In the approach followed

in [8], the total (ADM) mass is allowed to vary with time while the mass of the hole is kept

fixed. This time dependence accommodates the dynamics of the system and allows energy

conservation to hold at any time of the process.

Once the constraints are solved and the expression for the conjugate momenta are

substituted into the action one integrates over the gravitational degrees of freedom to

obtain an effective action. Furthermore one specializes to the case of a massless particle

(m = 0) and fixes the gauge appropriately (L = 1 R = r). This choice of the gauge

corresponds to a particular set of coordinates for the line element (Painleve’ coordinates)

which is particularly useful to study across horizon phenomena being non-singular at the

horizon and having euclidean constant time slices (for more details see [25]). The effective

action for a massless gravitating spherical shell is then

S =

∫

dt
(

pc
˙̂r − M+

)

, (2.3)

where pc is the momentum canonically conjugate to r̂, the radial position of the shell, and

M+ is the total mass of the shell-hole system which plays the role of the hamiltonian. In

terms of the black hole mass M and the shell energy E we have M+ = M + E. Details

of the lengthy derivation can be found in [8]. The trajectories which extremize this action

are the null geodesics of the metric

ds2 = −[Nt(r;M + E)dt]2 + [dr + Nr(r;M + E)dt]2 + r2dΩ2 , (2.4)

for which
dr

dt
= Nt(r;M + E) − Nr(r;M + E) . (2.5)

3. The KKW model in a nutshell

In [8] and [9], Keski-Vakkuri, Kraus and Wilczek showed how corrections of the type consid-

ered above can affect the emission spectrum of a black hole. They consider the Bogoliubov

coefficients, αkk′ and βkk′ , connecting the positive and negative frequency modes of an

asymptotic observer and one freely falling through the horizon. The (semiclassical) WKB

approximation is then used to express the mode solutions for the observer crossing the hori-

zon. Such an approximation is valid since the black hole emission is dominated by modes

that have very small wavelengths close to the horizon and undergo a large red-shift when

propagating away from it. Once this approximation is taken into account one finds [9]

|αkk′ | = e
−Im

R rf

r+(0)
p+(r)dr

; |βkk′ | = e
−Im

R rf

r
−

(0)
p−(r)dr

, (3.1)

– 3 –
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where r± and p± are the trajectories and momenta of positive and negative energy modes

propagating in and out of the horizon and rf is located outside the horizon. From Hamil-

ton’s equation ṙ = ∂H/∂p = ∂E
∂p

, with the hamiltonian given by H = M + E, one can

express p± using (2.5)

p±(r) =

∫ ±ωk

0

dE

Nt(r;M + E) − Nr(r;M + E)
. (3.2)

It can be shown [9] that αkk′ = 1. For βkk′ one instead finds

Im

∫ rf

r−(0)
p−(r)dr = −π

∫ −ωk

0

dE

κ(M + E)
. (3.3)

In order to calculate the amplitude for particle production in the KKW model, it is assumed

that the emission in the low energy regime is uncorrelated so that the amplitude in terms

of |βkk′/αkk′ |2 reads

ρ(ωk) =
|βkk′/αkk′ |2

1 − |βkk′/αkk′ |2
. (3.4)

Instead when ωk is comparable with the mass of the black hole and at most one quantum

can be emitted

ρ(ωk) '
∣

∣

∣

∣

βkk′

αkk′

∣

∣

∣

∣

2

. (3.5)

Using the first law of black-hole thermodynamics dM = κ(M)
2π

dS, one can evaluate (3.3).

For the first case when ωk is small compared to M , we obtain the usual emission amplitude

governed by the Hawking temperature. For large ωk instead one has

ρ(ωk) ' exp [S(M − ωk) − S(M)] . (3.6)

Substituting the standard Bekenstein-Hawking expression for the black hole entropy in

the previous equation leads to a non-thermal correction, quadratic in ωk, to the typical

Boltzmann factor of the emission probability.

4. Quantum tunneling and non-thermal spectrum

The results of [8] and [9] can be recast in an elegant and simple form if one describes

the emission of a particle as a tunneling process [10, 11]. This is done by considering

the geometrical optics limit1 so that one can treat the wave-packets near the horizon as

effective particles. The emission of each of these particles is seen as a tunneling through a

barrier set by the energy of the particles itself. This simple argument makes it possible to

avoid the machinery of Bogoliubov coefficients and also shows how energy conservation is

naturally preserved during the emission process [12].

1This limit is valid for the same reason that allowed us to use the WKB approximation in the analysis

of the previous section, i.e. the fact that the emitted wave packets are arbitrarily blue-shifted close to the

horizon.
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The authors consider now an explicit expression for the line element (2.4) obtained

from the expressions of Nt and Nr given by the constraint equations [8]

Nt = ±1 ; Nr = ±
√

2M+

r
. (4.1)

In the model proposed in [10] the total mass of the system is kept fixed while the hole mass

is allowed to vary. This means that the mass parameter M+ is now M+ = M − E. One

then has the following expression for a spherical shell moving along a radial null geodesic

ṙ = ±1 −
√

2(M − E)

r
. (4.2)

In the WKB approximation the tunneling probability is a function of the imaginary part

of the particle’s action

Γ ∼ e−2 Im S . (4.3)

If we consider the emission of a spherical shell we have

ImS = Im

∫ rfin

rin

prdr , (4.4)

where rin and rfin are just inside and outside the barrier through which the particle is

tunneling. We can now see the key point: the expression for ImS is the same as the

one for the Bogoliubov coefficient βkk′ used in the KKW analysis. The same coefficient

characterizes the emission probability in the field theoretical model. The advantage of

considering the particle-tunneling picture is that the correction we get now is present at

all energy regimes even though it becomes dominant only in the high energy regime. To

calculate Im S we use once again Hamilton’s equation, ṙ = ∂H/∂p,

ImS = Im

∫ rfin

rin

prdr = Im

∫ rfin

rin

∫ M−E

M

dH ′

ṙ
dr . (4.5)

The hamiltonian is H ′ = M − E′, so the imaginary part of the action reads

Im S = − Im

∫ rfin

rin

∫ E

0

dE′

ṙ
dr . (4.6)

Using (4.2) and integrating first over r one easily obtains

Γ ∼ exp

(

−8πME

(

1 − E

2M

))

, (4.7)

which, provided the usual Bekenstein-Hawking formula SBH = A/4 = 4πM2 is valid,

corresponds to the KKW result

Γ ∼ exp [SBH(M − E) − SBH(M)] . (4.8)

If one integrates (4.6) first over the energies it is easily seen that in order to get (4.7) we

must have rin = M and rout = M −E. So according to what one would expect from energy

conservation, the tunneling barrier is set by the shrinking of the black hole horizon with a

change in the radius set by the energy of the emitted particle itself.

– 5 –
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An interesting aspect to analyze is whether or not the non-thermal correction obtained

leads to statistical correlations between the probabilities of emission of quanta with different

energies. This would allow for information to be encoded in the emitted radiation. Consider

for example the probability of emission of a quantum of energy E = E1+E2 and two quanta

of energies E1 and E2. The function

χ(E1 + E2;E1, E2) = log(Γ(E1 + E2)) − log(Γ(E1)Γ(E2)) (4.9)

measures the statistical correlation between the two probabilities. It is zero when the

probabilities are independent (or “uncorrelated”) as e.g. for a thermal emission spectrum

like the one of a radiating black body. Using (4.7) it is easy to verify [12] that for the

non-thermal correction due to back-reaction effects χ(E1 +E2;E1, E2) = 0. One concludes

that back-reaction effects alone do not provide a straightforward way in which information

can emerge from the horizon. There might well be other processes that would allow the

information of a pure quantum state to be recovered after its gravitational collapse but one

would have to resort to other mechanisms.2

5. The Parikh-Wilczek tunneling picture revisited

In this section we discuss a modification of the above argument that takes into account the

presence of Quantum Gravity-induced corrections. Let us first notice that the probability

of emission of a shell with energy E, in the presence of back-reaction effects, put in the

form (4.8) is highly suggestive. It is what one would expect from a quantum mechanical

calculation of a transition rate where, up to a factor containing the square of the amplitude

of the process,

Γ ∼ eSfin

eSin
= exp (∆S) . (5.1)

In other words the emission probability is proportional to a phase space factor which

depends on the initial and final entropy of the system. The entropy is directly related to

the number of micro-states available to the system itself.

This observation calls for an immediate generalization. Derivations of the black hole

entropy-area relation by direct micro-state counting in String Theory and Loop Quantum

Gravity [16 – 20] besides reproducing the familiar Bekenstein-Hawking linear relation give

a leading order correction with a logarithmic3 dependence on the area4

SQG =
A

4L2
p

+ α ln
A

L2
p

+ O

(

L2
p

A

)

. (5.2)

In the case of Loop Quantum Gravity α is a negative coefficient whose exact value was once

an object of debate (see e.g. [26]) but has since been rigorously fixed at α = −1/2 [27]. In

2As proposed in [12] correlations might appear when back-reaction effects are considered in transient

phases of the black hole emission.
3A similar logarithmic term has also emerged in various other treatments (see [22] for a list); for instance,

the calculation of one-loop quantum corrections to the entropy-area law in ordinary QFT [21].
4We now switch from k = ~ = c = G = 1 units of the previous sections to k = ~ = c = 1 to keep track

of the Planck-scale suppressed terms.

– 6 –
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String Theory the sign of α depends on the number of field species appearing in the low

energy approximation [17].

Now consider the emission of a particle of energy E from the black hole. One might

expect that a derivation of the emission probability in a Quantum Gravity framework in

presence of back-reaction would lead to an expression analogous to (5.1) with the usual

Bekenstein-Hawking entropy SBH = A/4L2
p replaced by (5.2), i.e.

Γ ∼ exp (SQG(M − E) − SQG(M)) . (5.3)

The previous expression written in explicit form reads

Γ(E) ∼ exp (∆SQG) =

(

1 − E

M

)2α

exp

(

−8πGME

(

1 − E

2M

))

. (5.4)

The exponential in this equation shows the same type of non-thermal deviation found

in [10]. In this case, however, an additional factor depending on the ratio of the energy of

the emitted quantum and the mass of the black hole is present.

We would now like to know whether or not, in our case, the emission probabilities for

different modes are statistically correlated [28]. Using (5.4), we have, for a first emission

of energy E1,

ln[Γ(E1)] = −8πGME1

(

1 − E1

2M

)

+ 2α ln

[

M − E1

M

]

. (5.5)

Then a second emission of energy E2 gives us

ln[Γ(E2)] = −8πG(M − E1)E2

(

1 − E2

2(M − E1)

)

+ 2α ln

[

M − E1 − E2

M − E1

]

. (5.6)

Alternatively, a single emission of the same total energy yields

ln[Γ(E1 + E2)] = −8πGM(E1 + E2)

(

1 − E1 + E2

2M

)

+ 2α ln

[

M − E1 − E2

M

]

. (5.7)

It is now easily verified that the vanishing of the correlations, or

χ(E1 + E2;E1, E2) = 0 , (5.8)

is still in effect at least to this logarithmic order. In fact, after just a few iterations, one

should readily be convinced that this outcome will persist up to any perturbative order

of the quantum-corrected entropy [cf, equation (5.2)]. Hence, it does not appear that the

inclusion of such correlations can account for the mode correlations after all.

On the other hand, it is interesting to note that the emission of three or more quanta

could still induce a non-zero correlation even for the tree-level calculation. By which we

mean that, for the sequential emission of (e.g.) E1, E2 and E1 + E2, then S(M − E1) −
S(M) + S(M − E1 − E2) − S(M − E1) 6= S(M − 2E1 − 2E2) − S(M − E1 − E2). And so

there still appears to be viability, on some level, for the notion that information leaks out

in the tunneling process.

– 7 –
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Let us also notice how the appearance of the Quantum Gravity suppression term

in (5.4) can cause Γ(E) → 0 when the energy of the emitted quantum approaches the mass

of the black hole. However, this suppression can only take place when α > 0; whereas a

negative value of α will, conversely, cause the probability to diverge as the same limit is

approached!5

Considering that Loop Quantum Gravity predicts a negative value for α, one might

have preferred the above pattern to be reversed. But our outcome is actually quite rea-

sonable, inasmuch as an evaporating Schwarzschild black hole is (by virtue of a negative

heat capacity) highly unstable when in isolation. This instability can, nevertheless, be

resolved with the immersion of the black hole in a suitable heat bath. In this event, the

system will equilibrate until the temperature of the bath reaches that of the Hawking tem-

perature; at which point, stability ensues. Since a system in thermal equilibrium is most

suitably described by a canonical ensemble, it now becomes necessary to account for the

canonical corrections to the black hole entropy. It is therefore quite remarkable and, at the

same time, reassuring that the inclusion of these canonical corrections appears to ensure

a strictly non-negative value for α [29]. To elaborate, the canonical ensemble allows for

thermal fluctuations in the horizon area, which translates into an increase in the black hole

entropy. A rigorous calculation demonstrates that this increase is, at the very least, 1
2 ln A

(e.g., [30 – 32]) and almost certainly larger once the fluctuations in the charge and spin are

properly accounted for [29]. (The point being that even a classically neutral and static

black hole would still experience fluctuations in these quantities.) Hence, the canonical

correction is more than sufficient to compensate for the Loop Quantum Gravity prediction

of α = −1/2 [27].

6. Tunneling in the presence of near-horizon Planck-scale effects

We give now an explicit example of a modification of the Parikh-Wilczek derivation, in

the presence of Planck-scale effects, which indeed gives rise to an emission spectrum of the

type (5.4). In [23] one of the authors (M.A.), Amelino-Camelia and Procaccini showed how

in the context of Loop Quantum Gravity a logarithmic corrective term to the entropy-area

law of the type present in (5.2) can be related to a modification of the energy-momentum

dispersion relation for a massless particle propagating in flat space-time

p2 '
(

1 + ηL2
pE

2
)

E2 . (6.1)

with η = 2π
3 α.

As we already observed in the previous sections, the black hole radiation spectrum seen

from an observer at infinity is dominated by modes that propagate from “near” the horizon

where they have arbitrarily high frequencies and their wavelengths can easily go below the

Planck length [33, 34]. It turns out then that a key assumption in all the derivations of

the Hawking radiation is that the quantum state near the horizon looks, to a freely falling

5Let us, however, point out one possible loophole: higher-order corrections may conspire to induce a

suppression that is stronger than this divergence.

– 8 –
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observer, like the Minkowski vacuum. In other words Lorentz symmetry should hold up

to extremely short scales or very large boosts. It is plausible then that the motion of our

particle tunneling through the horizon might be affected by Planck scale corrections of

the type (6.1). These type of modified dispersion relations have, in fact, been proposed

as low-energy Quantum Gravity effects, which deform [35, 36] or break [37, 38] Lorentz

symmetry (see also [39]).

One would expect that an analysis analogous to the ones of the previous sections with

opportune modifications should lead to a result of the form (4.8) with SBH replaced by

SQG. Here we provide an example of such an analysis within the tunneling framework of

Parikh and Wilczek.

Once again we consider the emission of a spherical shell and compute the tunneling

amplitude (4.3) through (4.4)

Im S = Im

∫ rfin

rin

prdr = Im

∫ rfin

rin

∫ H

0

dH ′

ṙ
dr = − Im

∫ rfin

rin

∫ E

0

dE′

ṙ
dr . (6.2)

where we used the fact that for the hamiltonian H = M −E. Now we proceed to evaluate

the integral without using an explicit form for the null geodesic of the spherical shell in

terms of its energy. In fact, near the horizon, where our integral is being evaluated, one

has

Nt(r;M) − Nr(r;M) ' (r − R)κ(M) + O((r − R)2) (6.3)

where R is the Schwarzschild radius and κ(M) is the horizon surface gravity. Taking into

account self-gravitation effects, ṙ can be approximated by

ṙ ' (r − R)κ(M − E) + O((r − R)2) . (6.4)

We can then write

ImS = − Im

∫ rfin

rin

∫ E

0

dE′

(r − R)κ(M − E′)
dr . (6.5)

Integrating over r, using the Feynman prescription6 for the pole on the real axis r = R, we

get

Im S = −π

∫ E

0

dE′

κ(M − E′)
. (6.6)

The surface gravity appearing in the above integral carries Quantum Gravity corrections

coming from Planck-scale modifications of near horizon physics related to (6.1). As shown

explicitly in [23] these modifications are such that they reproduce via the first law of black

hole thermodynamics, dE′ = dM ′ = κ(M)
2π

dS, the Quantum Gravity corrected entropy-area

law (5.2). Using the first law, (6.6) becomes

Im S = −1

2

∫ SQG(M−E)

SQG(M)
dS =

1

2
[SQG(M) − SQG(M − E)] (6.7)

6The pole is moved in the lower half plane as in [10].
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which leads to a probability of emission

Γ(E) ∼ exp (−2 Im S) =

(

1 − E

M

)2α

exp

(

−8πGME

(

1 − E

2M

))

(6.8)

which is analogous to (5.4).

7. Conclusion

We have discussed how Quantum Gravity and back-reaction effects combined might provide

a way for information to be recovered from a black hole via Hawking radiation. Although

this matter still remains unsettled, we would argue that our direction of study could have

important implications for the fate of the unitarity of quantum evolution in Quantum

Gravity. Our formal treatment gives an idea of how near horizon physics provides an

excellent arena for studying the interplay of seemingly different aspects of Quantum Gravity

as the number of microscopic degrees of freedom of a black hole and possible Planck-scale

modifications of space-time symmetries.
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