72 research outputs found

    Exploring the Potential of Metal–Organic Frameworks for the Separation of Blends of Fluorinated Gases with High Global Warming Potential

    Get PDF
    Funding Information: The authors acknowledge the financial support from the LIFE‐4‐Fgases project, LIFE20 CCM/ES/001748, funded by EU LIFE Programme. This work was also financed by national funds from FCT/MCTES (Portugal) through Associate Laboratory for Green Chemistry–LAQV (UIDB/50006/2020 | UIDP/50006/2020), the contracts of Individual Call to Scientific Employment Stimulus 2020.00835.CEECIND (J.M.M.A.)/2021.01432.CEECIND (A.B.P.), and the Norma Transitória DL 57/2016 Program Contract (R.P.P.L.R.). Publisher Copyright: © 2022 The Authors. Global Challenges published by Wiley-VCH GmbH.The research on porous materials for the selective capture of fluorinated gases (F-gases) is key to reduce their emissions. Here, the adsorption of difluoromethane (R-32), pentafluoroethane (R-125), and 1,1,1,2-tetrafluoroethane (R-134a) is studied in four metal–organic frameworks (MOFs: Cu-benzene-1,3,5-tricarboxylate, zeolitic imidazolate framework-8, MOF-177, and MIL-53(Al)) and in one zeolite (ZSM-5) with the aim to develop technologies for the efficient capture and separation of high global warming potential blends containing these gases. Single-component sorption equilibria of the pure gases are measured at three temperatures (283.15, 303.15, and 323.15 K) by gravimetry and correlated using the Tóth and Virial adsorption models, and selectivities toward R-410A and R-407F are determined by ideal adsorption solution theory. While at lower pressures, R-125 and R-134a are preferentially adsorbed in all materials, at higher pressures there is no selectivity, or it is shifted toward the adsorption R-32. Furthermore, at high pressures, MOF-177 shows the highest adsorption capacity for the three F-gases. The results presented here show that the utilization of MOFs, as tailored made materials, is promising for the development of new approaches for the selective capture of F-gases and for the separation of blends of these gases, which are used in commercial refrigeration.publishersversionepub_ahead_of_prin

    Evaluation of effectiveness of 45S5 bioglass doped with niobium for repairing critical-sized bone defect in in vitro and in vivo models

    Get PDF
    Here, we investigated the biocompatibility of a bioactive sodium calcium silicate glass containing 2.6 mol% Nb2O5 (denoted BGPN2.6) and compare the results with the archetypal 45S5 bioglass. The glass bioactivity was tested using a range of in vitro and in vivo experiments to assess its suitability for bone regeneration applications. in vitro studies consisted of assessing the cytocompatibility of the BGPN2.6 glass with bone-marrow-derived mesenchymal stem cells (BM-MSCs). Systemic biocompatibility was verified by means of the quantification of biochemical markers and histopathology of liver, kidneys, and muscles. The glass genotoxicity was assessed using the micronucleus test. The regeneration of a calvarial defect was assessed using both qualitative and quantitative analysis of three-dimensional microcomputed tomography images. The BGPN2.6 glass was not cytotoxic to BM-MSCs. It is systemically biocompatible causing no signs of damage to high metabolic and excretory organs such as the liver and kidneys. No mutagenic potential was observed in the micronucleus test. MicroCT images showed that BGPN2.6 was able to nearly fully regenerate a critical-sized calvarial defect and was far superior to standard 45S5 Bioglass. Defects filled with BGPN2.6 glass showed over 90% coverage compare to just 66% for 45S5 Bioglass. For one animal the defect was completely filled in 8 weeks. These results clearly show that Nb-containing bioactive glasses are a safe and effective biomaterial for bone replacement

    LRRK2 secretion in exosomes is regulated by 14-3-3

    Get PDF
    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset Parkinson's disease (PD). Emerging evidence suggests a role for LRRK2 in the endocytic pathway. Here, we show that LRRK2 is released in extracellular microvesicles (i.e. exosomes) from cells that natively express LRRK2. LRRK2 localizes to collecting duct epithelial cells in the kidney that actively secrete exosomes into urine. Purified urinary exosomes contain LRRK2 protein that is both dimerized and phosphorylated. We provide a quantitative proteomic profile of 1673 proteins in urinary exosomes and find that known LRRK2 interactors including 14-3-3 are some of the most abundant exosome proteins. Disruption of the 14-3-3 LRRK2 interaction with a 14-3-3 inhibitor or through acute LRRK2 kinase inhibition potently blocks LRRK2 release in exosomes, but familial mutations in LRRK2 had no effect on secretion. LRRK2 levels were overall comparable but highly variable in urinary exosomes derived from PD cases and age-matched controls, although very high LRRK2 levels were detected in some PD affected cases. We further characterized LRRK2 exosome release in neurons and macrophages in culture, and found that LRRK2-positive exosomes circulate in cerebral spinal fluid (CSF). Together, these results define a pathway for LRRK2 extracellular release, clarify one function of the LRRK2 14-3-3 interaction and provide a foundation for utilization of LRRK2 as a biomarker in clinical trial

    Technology as 'Applied Science': a Serious Misconception that Reinforces Distorted and Impoverished Views of Science

    Get PDF
    The current consideration of technology as 'applied science', this is to say, as something that comes 'after' science, justifies the lack of attention paid to technology in science education. In our paper we question this simplistic view of the science-technology relationship, historically rooted in the unequal appreciation of intellectual and manual work, and we try to show how the absence of the technological dimension in science education contributes to a na¿ ve and distorted view of science which deeply affects the necessary scientific and technological literacy of all citizens

    Estratificação ambiental e otimização de rede de ensaios de genótipos de soja no Cerrado

    Get PDF
    O objetivo deste trabalho foi estabelecer uma estratificação ambiental consistente, para a recomendação e a avaliação de linhagens experimentais e cultivares de soja na região do Cerrado, a partir de análises da interação entre genótipos e ambientes (GxA) quanto à produtividade de grãos, além de avaliar a atual rede de ensaios de valor de cultivo e uso (VCU) para sua otimização. Os dados provieram de 559 ensaios de competição de linhagens de soja, realizados em 57 localidades, durante sete safras agrícolas (2002/2003 a 2008/2009). Realizaram-se análises conjuntas de variância, pelo modelo AMMI ("additive main effects and multiplicative interaction"), e de estratificação ambiental, pela abordagem correlata de "genótipos vencedores". A interação GxA foi sempre significativa, como resultado da resposta diferencial dos genótipos à variação ambiental. Os locais de teste se agruparam de modo diferente de acordo com os grupos de maturação. Observou-se redundância em 20% dos locais, o que indica a possibilidade de otimização da rede de ensaios, via eliminação ou substituição dessas localidades. A região-alvo deve receber estratificações distintas, congêneres a cada grupo de maturação, e pode ser dividida em 22 (ciclo precoce), 23 (ciclo médio) e 21 (ciclo tardio) estratos ambientais
    corecore