117 research outputs found

    Mining Medical Data: A Case Study of Endometriosis

    Get PDF
    [[abstract]]Ultrasound guided aspiration of ovarian endometrioma had been tried as an alternative therapeutic modality in patients whose desire to avoid surgery or surgical approach is contraindicated since 1991. Cyst puncture can reduce tumor volume and destruct the cyst wall, alleviate sticking circumstances and enhance the chance of recovery. But simple aspiration without other treatments results in high recurrence rate (28.5 % to 100 %). In order to reduce recurrence after aspiration, ultrasound-guided aspiration with instillation of tetracycline, methotrexate, and recombinant interleukin-2 has been combined and proven to be effective with the recurrence rates of 46.9 %, 18.1 %, and 40 % respectively. Noma et al. (2001) reported that conduct of ethanol instillation for more than 10 min particularly for a case with a single endometrial cyst is considered most effective from the standpoint of recurrence (14.9 %). Our goal is to analyze patients with recurrent pelvic cyst who underwent surgical intervention. The research data are based on clinical diagnosis, symptoms and medical intervention classification, and the cyst numbers are defined as forecast project target. The decision tree, methodology of data mining technology, is used to find the meaningful characteristic as well as each other mutually connection. The experimental result can help the clinical faculty doctors to better diagnose and provide treatment reference for future patients.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙

    Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine

    Get PDF
    Axonal demyelination is a consistent pathological sequel to chronic brain and spinal cord injuries and disorders that slows or disrupts impulse conduction, causing further functional loss. Since oligodendroglial progenitors are present in the demyelinated areas, failure of remyelination may be due to lack of sufficient proliferation and differentiation of oligodendroglial progenitors. Guanosine stimulates proliferation and differentiation of many types of cells in vitro and exerts neuroprotective effects in the central nervous system (CNS). Five weeks after chronic traumatic spinal cord injury (SCI), when there is no ongoing recovery of function, intraperitoneal administration of guanosine daily for 2 weeks enhanced functional improvement correlated with the increase in myelination in the injured cord. Emphasis was placed on analysis of oligodendrocytes and NG2-positive (NG2+) cells, an endogenous cell population that may be involved in oligodendrocyte replacement. There was an increase in cell proliferation (measured by bromodeoxyuridine staining) that was attributable to an intensification in progenitor cells (NG2+ cells) associated with an increase in mature oligodendrocytes (determined by Rip+ staining). The numbers of astroglia increased at all test times after administration of guanosine whereas microglia only increased in the later stages (14 days). Injected guanosine and its breakdown product guanine accumulated in the spinal cords; there was more guanine than guanosine detected. We conclude that functional improvement and remyelination after systemic administration of guanosine is due to the effect of guanosine/guanine on the proliferation of adult progenitor cells and their maturation into myelin-forming cells. This raises the possibility that administration of guanosine may be useful in the treatment of spinal cord injury or demyelinating diseases such as multiple sclerosis where quiescent oligodendroglial progenitors exist in demyelinated plaques

    Oligodendrocytes: biology and pathology

    Get PDF
    Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so

    PDGF in gliomas: more than just a growth factor?

    Get PDF
    Platelet-derived growth factor B (PDGF-B) is a growth factor promoting and regulating cell migration, proliferation, and differentiation, involved in both developmental processes and in maintaining tissue homeostasis under strict regulation. What are the implications of prolonged or uncontrolled growth factor signaling in vivo, and when does a growth factor such as PDGF-B become an oncogene? Under experimental conditions, PDGF-B induces proliferation and causes tumor induction. It is not known whether these tumors are strictly a PDGF-B-driven proliferation of cells or associated with secondary genetic events such as acquired mutations or methylation-mediated gene silencing promoting neoplasia. If PDGF-B-driven tumorigenesis was only cellular proliferation, associated changes in gene expression would thus be correlated with proliferation and not associated with secondary events involved in tumorigenesis and neoplastic transformation such as cycle delay, DNA damage response, and cell death. Changes in gene expression might be expected to be reversible, as is PDGF-B-driven proliferation under normal circumstances. Since PDGF signaling is involved in oligodendrocyte progenitor cell differentiation and maintenance, it is likely that PDGF-B stimulates proliferation of a pool of cells with that phenotype, and inhibition of PDGF-B signaling would result in reduced expression of oligodendrocyte-associated genes. More importantly, inhibition of PDGF signaling would be expected to result in reversion of genes induced by PDGF-B accompanied by a decrease in proliferation. However, if PDGF-B-driven tumorigenesis is more than simply a proliferation of cells, inhibition of PDGF signaling may not reverse gene expression or halt proliferation. These fundamental questions concerning PDGF-B as a potential oncogene have not been resolved

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

    Get PDF
    Parity-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system’s orbital momentum axis. We investigate a three-particle azimuthal correlator which is a P even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at √sNN=200  GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation

    Alzheimer disease models and human neuropathology: similarities and differences

    Get PDF
    Animal models aim to replicate the symptoms, the lesions or the cause(s) of Alzheimer disease. Numerous mouse transgenic lines have now succeeded in partially reproducing its lesions: the extracellular deposits of Aβ peptide and the intracellular accumulation of tau protein. Mutated human APP transgenes result in the deposition of Aβ peptide, similar but not identical to the Aβ peptide of human senile plaque. Amyloid angiopathy is common. Besides the deposition of Aβ, axon dystrophy and alteration of dendrites have been observed. All of the mutations cause an increase in Aβ 42 levels, except for the Arctic mutation, which alters the Aβ sequence itself. Overexpressing wild-type APP alone (as in the murine models of human trisomy 21) causes no Aβ deposition in most mouse lines. Doubly (APP × mutated PS1) transgenic mice develop the lesions earlier. Transgenic mice in which BACE1 has been knocked out or overexpressed have been produced, as well as lines with altered expression of neprilysin, the main degrading enzyme of Aβ. The APP transgenic mice have raised new questions concerning the mechanisms of neuronal loss, the accumulation of Aβ in the cell body of the neurons, inflammation and gliosis, and the dendritic alterations. They have allowed some insight to be gained into the kinetics of the changes. The connection between the symptoms, the lesions and the increase in Aβ oligomers has been found to be difficult to unravel. Neurofibrillary tangles are only found in mouse lines that overexpress mutated tau or human tau on a murine tau −/− background. A triply transgenic model (mutated APP, PS1 and tau) recapitulates the alterations seen in AD but its physiological relevance may be discussed. A number of modulators of Aβ or of tau accumulation have been tested. A transgenic model may be analyzed at three levels at least (symptoms, lesions, cause of the disease), and a reading key is proposed to summarize this analysis

    All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

    Get PDF
    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range 5 10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.Comment: 15 pages, 7 figures: data for plots and archived public version at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=70814&version=19, see also the public announcement at http://www.ligo.org/science/Publication-S6BurstAllSky

    Promoting remyelination in multiple sclerosis-recent advances

    Get PDF
    We review the current state of knowledge of remyelination in multiple sclerosis (MS), concentrating on advances in the understanding of the pathology and the regenerative response, and we summarise progress on the development of new therapies to enhance remyelination aimed at reducing progressive accumulation of disability in MS. We discuss key target pathways identified in experimental models, as although most identified targets have not yet progressed to the stage of being tested in human clinical trials, they may provide treatment strategies for demyelinating diseases in the future. Finally, we discuss some of the problems associated with testing this class of drugs, where they might fit into the therapeutic arsenal and the gaps in our knowledge
    corecore