267 research outputs found

    Sustainable tourism research towards twenty-five years of the journal of sustainable tourism

    Full text link
    © 2018 Advances in Hospitality and Tourism Research. All Rights Reserved. The Journal of Sustainable Tourism (JOST) is a main journal in 'Geography, Planning and Development'. The concept of sustainable tourism has gained importance over time. This paper presents a general overview of the journal over its lifetime by using bibliometric indicators. Moreover, in order to establish the position of sustainable tourism research, this paper identifies the trends in research through bibliometric studies. It uses the Scopus database to analyse the bibliometric data. This analysis includes key issues such as the publication and citation structure of the journal; the most cited articles; the leading authors, institutions, and countries in the journal; and the keywords that are most often used. This paper also uses the visualization of similarities to graphically map the bibliographic material. This analysis provides further insights into how JOST links to other journals and how it links researchers across the globe. These results indicate that JOST is one of the leading journals in the areas where the journal is indexed, with a wide range of authors from institutions and countries from all over the world publishing in it. The results of the current study can provide insights into topics related to sustainable tourism that can be researched in the future

    Associations between repetitive negative thinking and resting-state network segregation among healthy middle-aged adults

    Get PDF
    Background: Repetitive Negative Thinking (RNT) includes negative thoughts about the future and past, and is a risk factor for depression and anxiety. Prefrontal and anterior cingulate cortices have been linked to RNT but several regions within large-scale networks are also involved, the efficiency of which depends on their ability to remain segregated. Methods: Associations between RNT and system segregation (SyS) of the Anterior Salience Network (ASN), Default Mode Network (DMN) and Executive Control Network (ECN) were explored in healthy middle-aged adults (N = 341), after undergoing resting-state functional magnetic resonance imaging. Regression analyses were conducted with RNT as outcome variable. Explanatory variables were: SyS, depression, emotional stability, cognitive complaints, age and sex. Results: Analyses indicated that RNT was associated with depression, emotional stability, cognitive complaints, age and segregation of the left ECN (LECN) and ASN. Further, the ventral DMN (vDMN) presented higher connectivity with the ASN and decreased connectivity with the LECN, as a function of RNT. Conclusion: Higher levels of perseverative thinking were related to increased segregation of the LECN and decreased segregation of the ASN. The dissociative connectivity of these networks with the vDMN may partially account for poorer cognitive control and increased self-referential processes characteristic of RNT

    Involvement of the exomer complex in the polarized transport of Ena1 required for Saccharomyces cerevisiae survival against toxic cations

    Get PDF
    [EN] Exomer is an adaptor complex required for the direct transport of a selected number of cargoes from the trans-Golgi network (TGN) to the plasma membrane in Saccharomyces cerevisiae However, exomer mutants are highly sensitive to increased concentrations of alkali metal cations, a situation that remains unexplained by the lack of transport of any known cargoes. Here we identify several HAL genes that act as multicopy suppressors of this sensitivity and are connected to the reduced function of the sodium ATPase Ena1. Furthermore, we find that Ena1 is dependent on exomer function. Even though Ena1 can reach the plasma membrane independently of exomer, polarized delivery of Ena1 to the bud requires functional exomer. Moreover, exomer is required for full induction of Ena1 expression after cationic stress by facilitating the plasma membrane recruitment of the molecular machinery involved in Rim101 processing and activation of the RIM101 pathway in response to stress. Both the defective localization and the reduced levels of Ena1 contribute to the sensitivity of exomer mutants to alkali metal cations. Our work thus expands the spectrum of exomer-dependent proteins and provides a link to a more general role of exomer in TGN organization.We acknowledge Emma Keck for English language revision. We also thank members of the Translucent group, J. Arino, J. Ramos, and L. Yenush, for many useful discussions throughout this work and especially L. Yenush for her generous gift of strains and reagents. The help of O. Vincent was essential for developing the work involving RIM101. We also thank R. Valle for her technical assistance at the CR Laboratory. M. Trautwein is acknowledged for data acquisition and discussions during the early stages of the project. C.A. is supported by a USAL predoctoral fellowship. Work at the Spang laboratory was supported by the University of Basel and the Swiss National Science Foundation (31003A-141207 and 310030B-163480). C.R. was supported by grant SA073U14 from the Regional Government of Castilla y Leon and by grant BFU2013-48582-C2-1-P from the CICYT/FEDER Spanish program. J.M.M. acknowledges the financial support from Universitat Politecnica de Valencia project PAID-06-10-1496.Anton, C.; Zanolari, B.; Arcones, I.; Wang, C.; Mulet, JM.; Spang, A.; Roncero, C. (2017). Involvement of the exomer complex in the polarized transport of Ena1 required for Saccharomyces cerevisiae survival against toxic cations. Molecular Biology of the Cell. 28(25):3672-3685. https://doi.org/10.1091/mbc.E17-09-0549S367236852825Ariño, J., Ramos, J., & Sychrová, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09Bard, F., & Malhotra, V. (2006). The Formation of TGN-to-Plasma-Membrane Transport Carriers. Annual Review of Cell and Developmental Biology, 22(1), 439-455. doi:10.1146/annurev.cellbio.21.012704.133126Barfield, R. M., Fromme, J. C., & Schekman, R. (2009). The Exomer Coat Complex Transports Fus1p to the Plasma Membrane via a Novel Plasma Membrane Sorting Signal in Yeast. Molecular Biology of the Cell, 20(23), 4985-4996. doi:10.1091/mbc.e09-04-0324Bonifacino, J. S. (2014). Adaptor proteins involved in polarized sorting. Journal of Cell Biology, 204(1), 7-17. doi:10.1083/jcb.201310021Bonifacino, J. S., & Glick, B. S. (2004). The Mechanisms of Vesicle Budding and Fusion. Cell, 116(2), 153-166. doi:10.1016/s0092-8674(03)01079-1Bonifacino, J. S., & Lippincott-Schwartz, J. (2003). Coat proteins: shaping membrane transport. Nature Reviews Molecular Cell Biology, 4(5), 409-414. doi:10.1038/nrm1099Carlson, M., & Botstein, D. (1982). Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell, 28(1), 145-154. doi:10.1016/0092-8674(82)90384-1Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., … Mostafavi, S. (2010). The Genetic Landscape of a Cell. Science, 327(5964), 425-431. doi:10.1126/science.1180823De Matteis, M. A., & Luini, A. (2008). Exiting the Golgi complex. Nature Reviews Molecular Cell Biology, 9(4), 273-284. doi:10.1038/nrm2378De Nadal, E., Clotet, J., Posas, F., Serrano, R., Gomez, N., & Arino, J. (1998). The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proceedings of the National Academy of Sciences, 95(13), 7357-7362. doi:10.1073/pnas.95.13.7357Drubin, D. G., & Nelson, W. J. (1996). Origins of Cell Polarity. Cell, 84(3), 335-344. doi:10.1016/s0092-8674(00)81278-7Fell, G. L., Munson, A. M., Croston, M. A., & Rosenwald, A. G. (2011). Identification of Yeast Genes Involved in K+Homeostasis: Loss of Membrane Traffic Genes Affects K+Uptake. G3: Genes|Genomes|Genetics, 1(1), 43-56. doi:10.1534/g3.111.000166Ferrando, A., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1995). Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Molecular and Cellular Biology, 15(10), 5470-5481. doi:10.1128/mcb.15.10.5470Forsmark, A., Rossi, G., Wadskog, I., Brennwald, P., Warringer, J., & Adler, L. (2011). Quantitative Proteomics of Yeast Post-Golgi Vesicles Reveals a Discriminating Role for Sro7p in Protein Secretion. Traffic, 12(6), 740-753. doi:10.1111/j.1600-0854.2011.01186.xGaber, R. F., Styles, C. A., & Fink, G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and Cellular Biology, 8(7), 2848-2859. doi:10.1128/mcb.8.7.2848Galindo, A., Calcagno-Pizarelli, A. M., Arst, H. N., & Penalva, M. A. (2012). An ordered pathway for the assembly of fungal ESCRT-containing ambient pH signalling complexes at the plasma membrane. Journal of Cell Science, 125(7), 1784-1795. doi:10.1242/jcs.098897Goldstein, A. L., & McCusker, J. H. (1999). Three new dominant drug resistance cassettes for gene disruption inSaccharomyces cerevisiae. Yeast, 15(14), 1541-1553. doi:10.1002/(sici)1097-0061(199910)15:143.0.co;2-kHayashi, M., Fukuzawa, T., Sorimachi, H., & Maeda, T. (2005). Constitutive Activation of the pH-Responsive Rim101 Pathway in Yeast Mutants Defective in Late Steps of the MVB/ESCRT Pathway. Molecular and Cellular Biology, 25(21), 9478-9490. doi:10.1128/mcb.25.21.9478-9490.2005Herrador, A., Herranz, S., Lara, D., & Vincent, O. (2009). Recruitment of the ESCRT Machinery to a Putative Seven-Transmembrane-Domain Receptor Is Mediated by an Arrestin-Related Protein. Molecular and Cellular Biology, 30(4), 897-907. doi:10.1128/mcb.00132-09Herrador, A., Livas, D., Soletto, L., Becuwe, M., Léon, S., & Vincent, O. (2015). Casein kinase 1 controls the activation threshold of an α-arrestin by multisite phosphorylation of the interdomain hinge. Molecular Biology of the Cell, 26(11), 2128-2138. doi:10.1091/mbc.e14-11-1552Herranz, S., Rodriguez, J. M., Bussink, H.-J., Sanchez-Ferrero, J. C., Arst, H. N., Penalva, M. A., & Vincent, O. (2005). Arrestin-related proteins mediate pH signaling in fungi. Proceedings of the National Academy of Sciences, 102(34), 12141-12146. doi:10.1073/pnas.0504776102Hoya, M., Yanguas, F., Moro, S., Prescianotto-Baschong, C., Doncel, C., de León, N., … Valdivieso, M.-H. (2016). Traffic Through theTrans-Golgi Network and the Endosomal System Requires Collaboration Between Exomer and Clathrin Adaptors in Fission Yeast. Genetics, 205(2), 673-690. doi:10.1534/genetics.116.193458Huranova, M., Muruganandam, G., Weiss, M., & Spang, A. (2016). Dynamic assembly of the exomer secretory vesicle cargo adaptor subunits. EMBO reports, 17(2), 202-219. doi:10.15252/embr.201540795Kung, L. F., Pagant, S., Futai, E., D’Arcangelo, J. G., Buchanan, R., Dittmar, J. C., … Miller, E. A. (2011). Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. The EMBO Journal, 31(4), 1014-1027. doi:10.1038/emboj.2011.444Lamb, T. M., & Mitchell, A. P. (2003). The Transcription Factor Rim101p Governs Ion Tolerance and Cell Differentiation by Direct Repression of the Regulatory Genes NRG1 and SMP1 in Saccharomyces cerevisiae. Molecular and Cellular Biology, 23(2), 677-686. doi:10.1128/mcb.23.2.677-686.2003Lamb, T. M., Xu, W., Diamond, A., & Mitchell, A. P. (2000). Alkaline Response Genes ofSaccharomyces cerevisiaeand Their Relationship to theRIM101Pathway. Journal of Biological Chemistry, 276(3), 1850-1856. doi:10.1074/jbc.m008381200Madrid, R., Gómez, M. J., Ramos, J., & Rodrı́guez-Navarro, A. (1998). Ectopic Potassium Uptake intrk1 trk2Mutants ofSaccharomyces cerevisiaeCorrelates with a Highly Hyperpolarized Membrane Potential. Journal of Biological Chemistry, 273(24), 14838-14844. doi:10.1074/jbc.273.24.14838Maresova, L., & Sychrova, H. (2004). Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Molecular Microbiology, 55(2), 588-600. doi:10.1111/j.1365-2958.2004.04410.xMarqués, M. C., Zamarbide-Forés, S., Pedelini, L., Llopis-Torregrosa, V., & Yenush, L. (2015). A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae. FEMS Yeast Research, 15(4). doi:10.1093/femsyr/fov017Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328Mulet, J. M., & Serrano, R. (2002). Simultaneous determination of potassium and rubidium content in yeast. Yeast, 19(15), 1295-1298. doi:10.1002/yea.909Murguía, J. R., Bellés, J. M., & Serrano, R. (1996). The YeastHAL2Nucleotidase Is anin VivoTarget of Salt Toxicity. Journal of Biological Chemistry, 271(46), 29029-29033. doi:10.1074/jbc.271.46.29029Obara, K., & Kihara, A. (2014). Signaling Events of the Rim101 Pathway Occur at the Plasma Membrane in a Ubiquitination-Dependent Manner. Molecular and Cellular Biology, 34(18), 3525-3534. doi:10.1128/mcb.00408-14Paczkowski, J. E., & Fromme, J. C. (2014). Structural Basis for Membrane Binding and Remodeling by the Exomer Secretory Vesicle Cargo Adaptor. Developmental Cell, 30(5), 610-624. doi:10.1016/j.devcel.2014.07.014Paczkowski, J. E., Richardson, B. C., & Fromme, J. C. (2015). Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis. Trends in Cell Biology, 25(7), 408-416. doi:10.1016/j.tcb.2015.02.005Paczkowski, J. E., Richardson, B. C., Strassner, A. M., & Fromme, J. C. (2012). The exomer cargo adaptor structure reveals a novel GTPase-binding domain. The EMBO Journal, 31(21), 4191-4203. doi:10.1038/emboj.2012.268Parsons, A. B., Brost, R. L., Ding, H., Li, Z., Zhang, C., Sheikh, B., … Boone, C. (2003). Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nature Biotechnology, 22(1), 62-69. doi:10.1038/nbt919Peñalva, M. A., Lucena-Agell, D., & Arst, H. N. (2014). Liaison alcaline: Pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Current Opinion in Microbiology, 22, 49-59. doi:10.1016/j.mib.2014.09.005Ríos, G., Cabedo, M., Rull, B., Yenush, L., Serrano, R., & Mulet, J. M. (2013). Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Research, 13(1), 97-106. doi:10.1111/1567-1364.12013RIOS, G., FERRANDO, A., & SERRANO, R. (1997). Mechanisms of Salt Tolerance Conferred by Overexpression of theHAL1 Gene inSaccharomyces cerevisiae. Yeast, 13(6), 515-528. doi:10.1002/(sici)1097-0061(199705)13:63.0.co;2-xRitz, A. M., Trautwein, M., Grassinger, F., & Spang, A. (2014). The Prion-like Domain in the Exomer-Dependent Cargo Pin2 Serves as a trans-Golgi Retention Motif. Cell Reports, 7(1), 249-260. doi:10.1016/j.celrep.2014.02.026Rockenbauch, U., Ritz, A. M., Sacristan, C., Roncero, C., & Spang, A. (2012). The complex interactions of Chs5p, the ChAPs, and the cargo Chs3p. Molecular Biology of the Cell, 23(22), 4402-4415. doi:10.1091/mbc.e11-12-1015Roncero, C. (2002). The genetic complexity of chitin synthesis in fungi. Current Genetics, 41(6), 367-378. doi:10.1007/s00294-002-0318-7Rothfels, K., Tanny, J. C., Molnar, E., Friesen, H., Commisso, C., & Segall, J. (2005). Components of the ESCRT Pathway, DFG16, and YGR122w Are Required for Rim101 To Act as a Corepressor with Nrg1 at the Negative Regulatory Element of the DIT1 Gene of Saccharomyces cerevisiae. Molecular and Cellular Biology, 25(15), 6772-6788. doi:10.1128/mcb.25.15.6772-6788.2005Santos, B., & Snyder, M. (1997). Targeting of Chitin Synthase 3 to Polarized Growth Sites in Yeast Requires Chs5p and Myo2p. Journal of Cell Biology, 136(1), 95-110. doi:10.1083/jcb.136.1.95Sato, M., Dhut, S., & Toda, T. (2005). New drug-resistant cassettes for gene disruption and epitope tagging inSchizosaccharomyces pombe. Yeast, 22(7), 583-591. doi:10.1002/yea.1233Schekman, R., & Orci, L. (1996). Coat Proteins and Vesicle Budding. Science, 271(5255), 1526-1533. doi:10.1126/science.271.5255.1526Sopko, R., Huang, D., Preston, N., Chua, G., Papp, B., Kafadar, K., … Andrews, B. (2006). Mapping Pathways and Phenotypes by Systematic Gene Overexpression. Molecular Cell, 21(3), 319-330. doi:10.1016/j.molcel.2005.12.011Spang, A. (2008). Membrane traffic in the secretory pathway. Cellular and Molecular Life Sciences, 65(18), 2781-2789. doi:10.1007/s00018-008-8349-yStarr, T. L., Pagant, S., Wang, C.-W., & Schekman, R. (2012). Sorting Signals That Mediate Traffic of Chitin Synthase III between the TGN/Endosomes and to the Plasma Membrane in Yeast. PLoS ONE, 7(10), e46386. doi:10.1371/journal.pone.0046386Trautwein, M., Schindler, C., Gauss, R., Dengjel, J., Hartmann, E., & Spang, A. (2006). Arf1p, Chs5p and the ChAPs are required for export of specialized cargo from the Golgi. The EMBO Journal, 25(5), 943-954. doi:10.1038/sj.emboj.7601007Trilla, J. A., Durán, A., & Roncero, C. (1999). Chs7p, a New Protein Involved in the Control of Protein Export from the Endoplasmic Reticulum that Is Specifically Engaged in the Regulation of Chitin Synthesis in Saccharomyces cerevisiae. Journal of Cell Biology, 145(6), 1153-1163. doi:10.1083/jcb.145.6.1153Valdivia, R. H., Baggott, D., Chuang, J. S., & Schekman, R. W. (2002). The Yeast Clathrin Adaptor Protein Complex 1 Is Required for the Efficient Retention of a Subset of Late Golgi Membrane Proteins. Developmental Cell, 2(3), 283-294. doi:10.1016/s1534-5807(02)00127-2Wadskog, I., Forsmark, A., Rossi, G., Konopka, C., Öyen, M., Goksör, M., … Adler, L. (2006). The Yeast Tumor Suppressor Homologue Sro7p Is Required for Targeting of the Sodium Pumping ATPase to the Cell Surface. Molecular Biology of the Cell, 17(12), 4988-5003. doi:10.1091/mbc.e05-08-0798Wang, C.-W., Hamamoto, S., Orci, L., & Schekman, R. (2006). Exomer: a coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. Journal of Cell Biology, 174(7), 973-983. doi:10.1083/jcb.200605106Weiskoff, A. M., & Fromme, J. C. (2014). Distinct N-terminal regions of the exomer secretory vesicle cargo Chs3 regulate its trafficking itinerary. Frontiers in Cell and Developmental Biology, 2. doi:10.3389/fcell.2014.00047Yahara, N., Ueda, T., Sato, K., & Nakano, A. (2001). Multiple Roles of Arf1 GTPase in the Yeast Exocytic and Endocytic Pathways. Molecular Biology of the Cell, 12(1), 221-238. doi:10.1091/mbc.12.1.221Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920Zanolari, B., Rockenbauch, U., Trautwein, M., Clay, L., Barral, Y., & Spang, A. (2011). Transport to the plasma membrane is regulated differently early and late in the cell cycle in Saccharomyces cerevisiae. Journal of Cell Science, 124(7), 1055-1066. doi:10.1242/jcs.07237

    Radiofrequency Heating of the Cornea: An Engineering Review of Electrodes and Applicators

    Get PDF
    This paper reviews the different applicators and electrodes employed to create localized heating in the cornea by means of the application of radiofrequency (RF) currents. Thermokeratoplasty (TKP) is probably the best known of these techniques and is based on the principle that heating corneal tissue (particularly the central part of the corneal tissue, i.e. the central stroma) causes collagen to shrink, and hence changes the corneal curvature. Firstly, we point out that TKP techniques are a complex challenge from the engineering point of view, due to the fact that it is necessary to create very localized heating in a precise location (central stroma), within a narrow temperature range (from 58 to 76ºC). Secondly, we describe the different applicator designs (i.e. RF electrodes) proposed and tested to date. This review is planned from a technical point of view, i.e. the technical developments are classified and described taking into consideration technical criteria, such as energy delivery mode (monopolar versus bipolar), thermal conditions (dry versus cooled electrodes), lesion pattern (focal versus circular lesions), and application placement (surface versus intrastromal)

    Search for supersymmetric particles in scenarios with a gravitino LSP and stau NLSP

    Get PDF
    Sleptons, neutralinos and charginos were searched for in the context of scenarios where the lightest supersymmetric particle is the gravitino. It was assumed that the stau is the next-to-lightest supersymmetric particle. Data collected with the DELPHI detector at a centre-of-mass energy near 189 GeV were analysed combining the methods developed in previous searches at lower energies. No evidence for the production of these supersymmetric particles was found. Hence, limits were derived at 95% confidence level.Comment: 31 pages, 14 figure

    Mineralization of Acephate, a Recalcitrant Organophosphate Insecticide Is Initiated by a Pseudomonad in Environmental Samples

    Get PDF
    An aerobic bacterium capable of breaking down the pesticide acephate (O,S-dimethyl acetyl phosphoramidothioic acid) was isolated from activated sludge collected from a pesticide manufacturing facility. A phylogenetic tree based on the 16 S rRNA gene sequence determined that the isolate lies within the Pseudomonads. The isolate was able to grow in the presence of acephate at concentrations up to 80 mM, with maximum growth at 40 mM. HPLC and LC-MS/MS analysis of spent medium from growth experiments and a resting cell assay detected the accumulation of methamidophos and acetate, suggesting initial hydrolysis of the amide linkage found between these two moieties. As expected, the rapid decline in acephate was coincident with the accumulation of methamidophos. Methamidophos concentrations were maintained over a period of days, without evidence of further metabolism or cell growth by the cultures. Considering this limitation, strains such as described in this work can promote the first step of acephate mineralization in soil microbial communities

    Potassium Starvation in Yeast: Mechanisms of Homeostasis Revealed by Mathematical Modeling

    Get PDF
    The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range. We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method (“the reverse tracking algorithm”) we predicted and then verified experimentally that the main regulators under conditions of potassium starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to achieve homeostasis

    CaZF, a Plant Transcription Factor Functions through and Parallel to HOG and Calcineurin Pathways in Saccharomyces cerevisiae to Provide Osmotolerance

    Get PDF
    Salt-sensitive yeast mutants were deployed to characterize a gene encoding a C2H2 zinc finger protein (CaZF) that is differentially expressed in a drought-tolerant variety of chickpea (Cicer arietinum) and provides salinity-tolerance in transgenic tobacco. In Saccharomyces cerevisiae most of the cellular responses to hyper-osmotic stress is regulated by two interconnected pathways involving high osmolarity glycerol mitogen-activated protein kinase (Hog1p) and Calcineurin (CAN), a Ca2+/calmodulin-regulated protein phosphatase 2B. In this study, we report that heterologous expression of CaZF provides osmotolerance in S. cerevisiae through Hog1p and Calcineurin dependent as well as independent pathways. CaZF partially suppresses salt-hypersensitive phenotypes of hog1, can and hog1can mutants and in conjunction, stimulates HOG and CAN pathway genes with subsequent accumulation of glycerol in absence of Hog1p and CAN. CaZF directly binds to stress response element (STRE) to activate STRE-containing promoter in yeast. Transactivation and salt tolerance assays of CaZF deletion mutants showed that other than the transactivation domain a C-terminal domain composed of acidic and basic amino acids is also required for its function. Altogether, results from this study suggests that CaZF is a potential plant salt-tolerance determinant and also provide evidence that in budding yeast expression of HOG and CAN pathway genes can be stimulated in absence of their regulatory enzymes to provide osmotolerance

    Ultrasound-assisted extraction of natural products

    Full text link
    Ultrasound-assisted extraction (USAE) is an interesting process to obtain high valuable compounds and could contribute to the increase in the value of some food by-products when used as sources of natural compounds. The main benefits will be a more effective extraction, thus saving energy, and also the use of moderate temperatures, which is beneficial for heat-sensitive compounds. For a successful application of the USAE, it is necessary to consider the influence of several process variables, the main ones being the applied ultrasonic power, the frequency, the extraction temperature, the reactor characteristics, and the solvent-sample interaction. The highest extraction rate is usually achieved in the first few minutes, which is the most profitable period. To optimize the process, rate equations and unambiguous process characterization are needed, aspects that have often been lacking. © 2011 Springer Science+Business Media, LLC.The authors thank the Generalitat Valenciana for their financial support in project PROMETEO/2010/062 and the Caja de Ahorros del Mediterraneo for M.D. Esclapez's pre-doctoral grant.Esclapez Vicente, MD.; García Pérez, JV.; Mulet Pons, A.; Cárcel Carrión, JA.; Esclapez, MD. (2011). Ultrasound-assisted extraction of natural products. Food Engineering Reviews. 3(2):108-120. https://doi.org/10.1007/s12393-011-9036-6S10812032Abad Romero B, Bou-Maroun E, Reparet JM, Blanquet J, Cayot N (2010) Impact of lipid extraction on the dearomatisation of an Eisenia foetida protein powder. Food Chem 119:459–466Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715Atchley AA, Crum LA (1988) Acoustic cavitation and bubble dynamics. In: Suslick KS (ed) Ultrasound, its chemical, physical, and biological effects. VHS Publishers, Weinheim, pp 1–64Arnold G, Leiteritz L, Zahn S, Rohm H (2009) Ultrasonic cutting of cheese: composition affects cutting work reduction and energy demand. Int Dairy J 19:314–320Barbero GF, Liazid A, Palma M, Barroso CG (2008) Ultrasound-assisted extraction of capsaicinoids from peppers. Talanta 75:1332–1337Benedito J, Carcel JA, Sanjuan N, Mulet A (2000) Use of ultrasound to assess Cheddar cheese characteristics. Ultrasonics 38:727–730Benedito J, Carcel JA, Rossello C, Mulet A (2001) Composition assessment of raw meat mixtures using ultrasonics. Meat Sci 57:365–370Bhaskaracharya RK, Kentish S, Ashokkumar M (2009) Selected applications of ultrasonics in food processing. Food Eng Rev 1:31–49Boonkird S, Phisalaphong C, Phisalaphong M (2008) Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab- and pilot-plant scale. Ultrason Sonochem 15:1075–1079Cárcel JA, Benedito J, Bon J, Mulet A (2007) High intensity ultrasound effects on meat brining. Meat Sci 76:611–619Cárcel JA, Benedito J, Rosselló C, Mulet A (2007) Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. J Food Eng 78:472–479Cavitus (2009) Grape colour and flavour extraction (Pat. Pend.) for red must extraction http://www.cavitus.com . Crafers. Accessed 10 Jan 2011Chea Chua S, Ping Tan C, Mirhosseini H, Ming Lai O, Long K, Sham Baharin B (2009) Optimization of ultrasound extraction condition of phospholipids from palm-pressed fiber. J Food Eng 92:403–409Chena R, Menga F, Zhang S, Liu Z (2009) Effects of ultrahigh pressure extraction conditions on yields and antioxidant activity of ginsenoside from ginseng. Sep Purif Technol 66:340–346Chivate MM, Pandit AB (1995) Quantification of cavitation intensity in fluid bulk. Ultrason Sonochem 2:19–25Da Porto C, Decorti D (2009) Ultrasound-assisted extraction coupled with under vacuum distillation of flavour compounds from spearmint (carvone-rich) plants: comparison with conventional hydrodistillation. Ultrason Sonochem 16:795–799Da Porto C, Decorti D, Kikic I (2009) Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. Food Chem 112:1072–1078Domínguez H, Núñez MJ, Lema JM (1994) Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food Chem 49:271–286Dong J, Liu Y, Liang Z, Wanga W (2010) Investigation on ultrasound-assisted extraction of salvianolic acid B from Salvia miltiorrhiza root. Ultrason Sonochem 17:61–65Entezari MH, Kruus P (1994) Effect of frequency on sonochemical reactions. I: oxidation of iodide. Ultrason Sonochem 1:75–79Esclapez MD, Sáez V, Milán-Yáñez D, Tudela I, Louisnard O, González-García J (2010) Sonoelectrochemical treatment of water polluted with trichloroacetic acid: from sonovoltammetry to pre-pilot plant scale. Ultrason Sonochem 17:1010–1020Ferraro V, Cruz IB, Ferreira R, Malcata JFX, Pintado ME, Castro PML (2010) Valorisation of natural extracts from marine source focused on marine by-products: review. Food Res Int 43:2221–2233Fischer CH, Hart EJ, Henglein AJ (1986) Hydrogen/deuterium isotope exchange in the hydrogen deuteride-water system under the influence of ultrasound. Phys Chem 90:3059–3060Garcia-Noguera J, Weller CL, Oliveira FIP, Rodrigues S, Fernandes FAN (2010) Dual-stage sugar substitution in strawberries with a Stevia-based sweetener. Innovative Food Sci Emerg Technol 11:225–230García-Pérez JV, Cárcel JA, de la Fuente-Blanco S, Riera-Franco de Sarabia E (2006) Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics 44:539–543García-Pérez JV, García-Alvarado MA, Carcel JA, Mulet A (2010) Extraction kinetics modeling of antioxidants from grape stalk (Vitis vinifera var. Bobal): Influence of drying conditions. J Food Eng 101:49–58González-García J, Sáez V, Tudela I, Díez-Garcia MI, Esclapez MD, Louisnard O (2010) Sonochemical treatment of water polluted by chlorinated organocompounds. A review. Water 2:28–74Handa SS, Preet S, Khanuja S, Longo G, Rakesh DD (2008) Extraction Technologies for Medicinal and Aromatic Plants. United Nations Industrial Development Organization and the International Centre for Science and High Technology, TriesteHemwimol S, Pavasant P, Shotipruk A (2006) Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason Sonochem 13:543–548Hielscher (2011) Teltow http:// www.hielscher.com . Accessed 10 Jan 2011Hu Y, Wang T, Wang M, Han S, Wan P, Fan M (2008) Extraction of isoflavonoids from Pueraria by combining ultrasound with microwave vacuum. Chem Engin Process 47:2256–2261Ince NH, Tezcanli G, Belen RK, Apikyan PG (2001) Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl Catal B 29:167–176Jadhav D, Rekha BN, Gogate PR, Rathod VK (2009) Extraction of vanillin from vanilla pods: a comparison study of conventional soxhlet and ultrasound assisted extraction. J Food Eng 93:421–426Ji J-b, Lu X-h, Cai M-q, Xu C-c (2006) Improvement of leaching process of Geniposide with ultrasound. Ultrason Sonochem 13:455–462Kanthale PM, Gogate PR, Pandit AB, Wilhelm AM (2003) Mapping of an ultrasonic horn: link primary and secondary effects of ultrasound. Ultrason Sonochem 10:331–335Karki B, Lamsal BP, Jung S, van Leeuwen JH, Pometto AL III, Grewell D, Khanal SK (2010) Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. J Food Eng 96:270–278Kardos N, Luche J-L (2001) Sonochemistry of carbohydrate compounds. Carbohydr Res 332:115–131Kotronarou A, Mills G, Hoffmann MR (1991) Ultrasonic Irradiation of para-Nitrophenol in Aqueous Solution. J Phys Chem 95:3630–3638Kuijpers MWA, Kemmere MF, Keurentjes JTF (2002) Calorimetric study of the energy efficiency for ultrasound-induced radical formation. Ultrasonics 40:675–678Leighton TG (2007) What is ultrasound? Prog Biophys Mol Biol 93:3–83Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process 49:885–900Li H, Pordesimo L, Weiss J (2004) High intensity ultrasound-assisted extraction of oil from soybeans. Food Res Int 37:731–738Liu J, Li J-W, Tang J (2010) Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts. Food Bioprod Process 88:215–221Lianfu Z, Zelong L (2008) Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason Sonochem 15:731–737Liazid A, Schwarz M, Varela RM, Palma M, Guillén DA, Brigui J, Macías FA, Barroso CG (2010) Evaluation of various extraction techniques for obtaining bioactive extracts from pine seeds. Food Bioprod Process 88:247–252Londoño-Londoño J, Rodrigues de Lima V, Lara O, Gil A, Crecsynski Pasa TB, Arango GJ, Ramirez Pineda JR (2010) Clean recovery of antioxidant flavonoids from citrus peel: optimizing an aqueous ultrasound-assisted extraction method. Food Chem 119:81–87Lou Z, Wang H, Zhang M, Wang Z (2010) Improved extraction of oil from chickpea under ultrasound in a dynamic system. J Food Eng 98:13–18Louisnard O, González-García J, Tudela I, Klima J, Sáez V, Vargas-Hernández Y (2009) FEM simulation of a sono-reactor accounting for vibrations of the boundaries. Ultrason Sonochem 16:250–259Luque de Castro MD, Priego-Capote F (2007) Analytical Applications of Ultrasound, Vol. 26, Techniques and Instrumentation in Analytical Chemistry. Elsevier Science, AmsterdamMa Y, Ye X, Hao Y, Xu G, Xu G, Liu D (2008) Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrason Sonochem 15:227–232Ma Y, Chen J-C, Liu Dong-Hong, Ye X-Q (2009) Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrason Sonochem 16:57–62Makino K, Mossoba MM, Riesz P (1982) Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (.cntdot. OH and. cntdot. H) by spin trapping. J Chem Soc 104:3537–3539Margulis MA, Margulis IM (2003) Calorimetric method for measurement of acoustic power absorbed in a volume of liquid. Ultrason Sonochem 10:343–345Martin CJ, Law ANR (1983) Design of thermistor probes for measurement of ultrasound intensity distributions. Ultrasonics 21:85–90Mason TJ, Lorimer JP, Bates DM, Zhao Y (1994) Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason Sonochem 1:91–95Meinhardt (2011) Leipzig. http://www.meinhardt-ultraschall.de . Accessed 10 Jan 2011Montalbo-Lomboy M, Khanal SK, van Leeuwen JH, Raman DR, Dunn L Jr, Grewell D Jr (2010) Ultrasonic pretreatment of corn slurry for saccharification: a comparison of batch and continuous Systems. Ultrason Sonochem 17:939–946Mulet A, Cárcel JA, Sanjuán N, Bon J (2003) New food drying technologies. Use of ultrasound. Food Sci Technol Int 9:215–221Naguleswaran S, Vasanthan T (2010) Dry milling of field pea (Pisum sativum L.) groats prior to wet fractionation influences the starch yield and purity. Food Chem 118:627–633Orozco-Solano M, Ruiz-Jiménez J, Luque de Castro MD (2010) Ultrasound-assisted extraction and derivatization of sterols and fatty alcohols from olive leaves and drupes prior to determination by gas chromatography–tandem mass spectrometry. J Chromatogr A 1217:1227–1235Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innovative Food Sci Emerg Technol 9:147–154Price GJ (1990) The use of ultrasound for the controlled degradation of polymer solutions. In: Mason TJ (ed) Advances in sonochemistry, vol 1. Jai Press, Cambridge, pp 231–287Riener J, Noci G, Cronin DA, Morgan DJ, Lyng JG (2010) A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks. Food Chem 119:1108–1113Riera E, Golás Y, Blanco A, Gallego JA, Blasco M, Mulet A (2004) Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrason Sonochem 11:241–244Riera E, Blanco A, García J, Benedito J, Mulet A, Gallego-Juárez JA, Blasco M (2010) High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes. Physics Procedia 3:141–146Roldán-Gutiérrez JM, Ruiz-Jiménez J, Luque de Castro MD (2008) Ultrasound-assisted dynamic extraction of valuable compounds from aromatic plants and flowers as compared with steam distillation and superheated liquid extraction. Talanta 75:1369–1375Romdhane M, Gourdon C (2002) Investigation in solid–liquid extraction: influence of ultrasound. Chem Eng J 87:11–19Rong L, Kojima Y, Koda S, Nomura H (2008) Simple quantification of ultrasonic intensity using aqueous solution of phenolphthalein. Ultrason Sonochem 8:11–15Sáez V, Frias-Ferrer A, Iniesta J, Gonzalez-Garcıa J, Aldaz A, Riera E (2005) Chacterization of a 20 kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods. Ultrason Sonochem 12:59–65Sáez V, Frias-Ferrer A, Iniesta J, Gonzalez-Garcıa J, Aldaz A, Riera E (2005) Characterization of a 20 kHz sonoreactor. Part II: analysis of chemical effects by classical and electrochemical methods. Ultrason Sonochem 12:67–72Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM (2009) Application of supercritical CO2 in lipid extraction–A review. J Food Eng 95:240–253Science Direct Database (2011) www.sciencedirect.com (Data of consulting: February 2011)Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21:323–331Starmans DAJ, Nijhuis HH (1996) Extraction of secondary metabolites from plant material: a review. Trends Food Sci Technol 7:191–197Sivakumar V, Lakshmi Anna J, Vijayeeswarri J, Swaminathan G (2009) Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrason Sonochem 16:782–789Stanisavljevic IT, Lazic ML, Veljkovic VB (2007) Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrason Sonochem 14:646–652Sun Y, Liu D, Chen J, Ye X, Yu D (2011) Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-b-carotene from citrus peels. Ultrason Sonochem 18:243–249Suslick KS (2001) Sonoluminescence and sonochemistry. In: Meyers RA (ed) Encyclopedia of physical science and technology, vol 17, 3rd edn. Academic Press, San Diego, pp 363–376Trabelsi F, Ait-Iyazidi H, Berlan J, Fabre PL, Delmas H, Wilhelm AM (1996) Electrochemical determination of the active zones in a high-frequency ultrasonic reactor. Ultrason Sonochem 3:125–130Veillet S, Tomao V, Chemat F (2010) Ultrasound assisted maceration: an original procedure for direct aromatisation of olive oil with basil. Food Chem 123:905–911Velickovic DT, Milenovic DM, Ristic MS, Veljkovic VB (2008) Ultrasonic extraction of waste solid residues from the Salvia sp. Essential oil hydrodistillation. Biochem Eng J 42:97–104Vercet A, Burgos J, Crelier S, Lopez-Buesa P (2001) Inactivation of proteases and lipases by ultrasound. Innovative Food Sci Emerg Technol 2:139–150Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innovative Food Sci Emerg Technol 9:161–169Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303–313Virot M, Tomao V, Le Bourvellec C, Renard CMCG, Chemat F (2010) Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrason Sonochem 17:1066–1074Wang J, Sun B, Cao Y, Tian Y, Li X (2008) Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem 106:804–810Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312Wei X, Chen M, Xiao Ja, Liu Y, Yu L, Zhang H, Wang Y (2010) Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohydr Polym 79:418–422Weissler A, Cooper HW, Snyder S (1950) Chemical effects of ultrasonic waves: oxidation of potassium iodide solution by carbon tetrachloride. J Am Chem Soc 72:1769–1775Wulff-Pérez M, Torcello-Gómez A, Gálvez-Ruíz MJ, Martín-Rodríguez A (2009) Stability of emulsions for parenteral feeding: preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloids 23:1096–1102Yang B, Yang H, Li J, Li Z, Jiang Y (2011) Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Food Chem 124:551–555Yang Y, Zhang F (2008) Ultrasound-assisted extraction of rutin and quercetin from Euonymus alatus (Thunb.) Sieb. Ultrason Sonochem 15:308–313Zhang Z-S, Wang L-J, Li D, Jiao S-S, Chena XD, Maoa Z-H (2008) Ultrasound-assisted extraction of oil from flaxseed. Sep Purif Technol 62:192–198Zhang H-F, Yang X-H, Zhao L-D, Wang Y (2009) Ultrasonic-assisted extraction of epimedin C from fresh leaves of Epimedium and extraction mechanism. Innovative Food Sci Emerg Technol 10:54–60Zhang Q-A, Zhang Z-Q, Yue X-F, Fan X-H, Li T, Chen S-F (2009) Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chem 116:513–518Zhao S, Kwok K-C, Liang H (2007) Investigation on ultrasound assisted extraction of saikosaponins from Radix Bupleuri. Sep Purif Technol 55:307–312Zhu KX, Sun X-H, Zhou H-M (2009) Optimization of ultrasound-assisted extraction of defatted wheat germ proteins by reverse micelles. J Cereal Sci 50:266–271Zheng L, Sun D-W (2006) Innovative applications of power ultrasound during food freezing processes—a review. Trends Food Sci Technol 17:16–23Zou Y, Xie C, Fan G, Gu Z, Han Y (2010) Optimization of ultrasound-assisted extraction of melanin from Auricularia auricula fruit bodies. Innovative Food Sci Emerg Technol 11:611–61
    corecore