448 research outputs found

    Running Gauge Coupling in Asymptotically Safe Quantum Gravity

    Full text link
    We investigate the non-perturbative renormalization group behavior of the gauge coupling constant using a truncated form of the functional flow equation for the effective average action of the Yang-Mills-gravity system. We find a non-zero quantum gravity correction to the standard Yang-Mills beta function which has the same sign as the gauge boson contribution. Our results fit into the picture according to which Quantum Einstein Gravity (QEG) is asymptotically safe, with a vanishing gauge coupling constant at the non-trivial fixed point.Comment: 27 page

    Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts

    Get PDF
    Triacylglycerols (TAG) and steryl esters (SE) are the principal storage lipids in all eukaryotic cells. In yeasts, these storage lipids accumulate within special organelles known as lipid bodies (LB). In the lipid accumulation-oriented metabolism of the oleaginous yeast Yarrowia lipolytica, storage lipids are mostly found in the form of TAG, and only small amounts of SE accumulate. We report here the identification of a new DAG acyltransferase gene, DGA2, homologous to the ARE genes of Saccharomyces cerevisiae. This gene encodes a member of the type 1 acyl-CoA:diacylglycerol acyltransferase family (DGAT1), which has not previously been identified in yeasts, but is commonly found in mammals and plants. Unlike the Are proteins in S. cerevisiae, Dga2p makes a major contribution to TAG synthesis via an acyl-CoA-dependent mechanism and is not involved in SE synthesis. This enzyme appears to affect the size and morphology of LB, suggesting a direct role of storage lipid proteins in LB formation. We report that the Are1p of Y. lipolytica was essential for sterol esterification, as deletion of the encoding gene (ARE1) completely abolished SE synthesis. Unlike its homologs in yeasts, YlARE1 has no DAG acyltransferase activity. We also reconsider the role and function of all four acyltransferase enzymes involved in the final step of neutral lipid synthesis in this oleaginous yeast

    Deployable Laboratory Response to Influenza Pandemic; PCR Assay Field Trials and Comparison with Reference Methods

    Get PDF
    Background: The influenza A/H1N1/09 pandemic spread quickly during the Southern Hemisphere winter in 2009 and reached epidemic proportions within weeks of the official WHO alert. Vulnerable population groups included indigenous Australians and remote northern population centres visited by international travellers. At the height of the Australian epidemic a large number of troops converged on a training area in northern Australia for an international exercise, raising concerns about their potential exposure to the emerging influenza threat before, during and immediately after their arrival in the area. Influenza A/H1N1/09 became the dominant seasonal variant and returned to Australia during the Southern winter the following year. Methods: A duplex nucleic acid amplification assay was developed within weeks of the first WHO influenza pandemic alert, demonstrated in northwestern Australia shortly afterwards and deployed as part of the pathology support for a field hospital during a military exercise during the initial epidemic surge in June 2009. Results: The nucleic acid amplification assay was twice as sensitive as a point of care influenza immunoassay, as specific but a little less sensitive than the reference laboratory nucleic acid amplification assay. Repetition of the field assay with blinded clinical samples obtained during the 2010 winter influenza season demonstrated a 91.7% congruence with the reference laboratory method. Conclusions: Rapid in-house development of a deployable epidemic influenza assay allowed a flexible laboratory response, effective targeting of limited disease control resources in an austere military environment, and provided the public health laboratory service with a set of verification tools for resource-limited settings. The assay method was suitable for rapid deployment in time for the 2010 Northern winter

    A Novel Gene, fudoh, in the SCCmec Region Suppresses the Colony Spreading Ability and Virulence of Staphylococcus aureus

    Get PDF
    Staphylococcus aureus colonies can spread on soft agar plates. We compared colony spreading of clinically isolated methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). All MSSA strains showed colony spreading, but most MRSA strains (73%) carrying SCCmec type-II showed little colony spreading. Deletion of the entire SCCmec type-II region from these MRSA strains restored colony spreading. Introduction of a novel gene, fudoh, carried by SCCmec type-II into Newman strain suppressed colony spreading. MRSA strains with high spreading ability (27%) had no fudoh or a point-mutated fudoh that did not suppress colony spreading. The fudoh-transformed Newman strain had decreased exotoxin production and attenuated virulence in mice. Most community-acquired MRSA strains carried SCCmec type-IV, which does not include fudoh, and showed high colony spreading ability. These findings suggest that fudoh in the SCCmec type-II region suppresses colony spreading and exotoxin production, and is involved in S. aureus pathogenesis

    Importance of the Global Regulators Agr and SaeRS in the Pathogenesis of CA-MRSA USA300 Infection

    Get PDF
    CA-MRSA infection, driven by the emergence of the USA300 genetic background, has become epidemic in the United States. USA300 isolates are hypervirulent, compared with other CA- and HA-MRSA strains, in experimental models of necrotizing pneumonia and skin infection. Interestingly, USA300 isolates also have increased expression of core genomic global regulatory and virulence factor genes, including agr and saeRS. To test the hypothesis that agr and saeRS promote the observed hypervirulent phenotype of USA300, isogenic deletion mutants of each were constructed in USA300. The effects of gene deletion on expression and protein abundance of selected downstream virulence genes were assessed by semiquantitative real-time reverse-transcriptase PCR (qRT-PCR) and western blot, respectively. The effects of gene deletion were also assessed in mouse models of necrotizing pneumonia and skin infection. Deletion of saeRS, and, to a lesser extent, agr, resulted in attenuated expression of the genes encoding α-hemolysin (hla) and the Panton-Valentine leukocidin (lukSF-PV). Despite the differences in hla transcription, the toxin was undetectable in culture supernatants of either of the deletion mutants. Deletion of agr, but not saeRS, markedly increased the expression of the gene encoding protein A (spa), which correlated with increased protein abundance. Each deletion mutant demonstrated significant attenuation of virulence, compared with wild-type USA300, in mouse models of necrotizing pneumonia and skin infection. We conclude that agr and saeRS each independently contribute to the remarkable virulence of USA300, likely by means of their effects on expression of secreted toxins

    Clinical and molecular epidemiology of methicillin-resistant Staphylococcus aureus in New Zealand: rapid emergence of sequence type 5 (ST5)-SCCmec-IV as the dominant community-associated MRSA clone.

    Get PDF
    The predominant community-associated MRSA strains vary between geographic settings, with ST8-IV USA300 being the commonest clone in North America, and the ST30-IV Southwest Pacific clone established as the dominant clone in New Zealand for the past two decades. Moreover, distinct epidemiological risk factors have been described for colonisation and/or infection with CA-MRSA strains, although these associations have not previously been characterized in New Zealand. Based on data from the annual New Zealand MRSA survey, we sought to describe the clinical and molecular epidemiology of MRSA in New Zealand. All non-duplicate clinical MRSA isolates from New Zealand diagnostic laboratories collected as part of the annual MRSA survey were included. Demographic data was collected for all patients, including age, gender, ethnicity, social deprivation index and hospitalization history. MRSA was isolated from clinical specimens from 3,323 patients during the 2005 to 2011 annual surveys. There were marked ethnic differences, with MRSA isolation rates significantly higher in Māori and Pacific Peoples. Over the study period, there was a significant increase in CA-MRSA, and a previously unidentified PVL-negative ST5-IV spa t002 clone replaced the PVL-positive ST30-IV Southwest Pacific clone as the dominant CA-MRSA clone. Of particular concern was the finding of several successful and virulent MRSA clones from other geographic settings, including ST93-IV (Queensland CA-MRSA), ST8-IV (USA300) and ST772-V (Bengal Bay MRSA). Ongoing molecular surveillance is essential to prevent these MRSA strains becoming endemic in the New Zealand healthcare setting

    Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s

    Get PDF
    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table

    Application of prolonged microdialysis sampling in carboplatin-treated cancer patients

    Get PDF
    Purpose: To better understand the mechanisms underlying (in)sensitivity of tumors to anticancer drugs, assessing intra-tumor drug pharmacokinetics (PKs) could be important. We explored the feasibility of microdialysis in tumor tissue for multiple days in a clinical setting, using carboplatin as model drug. Methods: Plasma and microdialysate samples from tumor and adipose normal tissues were collected up to 47 h after dosing in eight carboplatin-treated patients with an accessible (sub)cutaneous tumor. Results: Pharmacokinetics were evaluable in tumor tissue in 6/8 patients and in adipose normal tissue in 3/8 patients. Concentration-time curves of unbound platinum in both the tissues followed the pattern of the curves in plasma, with exposure ratios of tissue versus plasma ranging from 0.64 to 1.46. Conclusions: Microdialysis can be successfully employed in ambulant patients for multiple days, which enables one to study tissue PK of anticancer drugs in normal and malignant tissues in more detail

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore