268 research outputs found

    Nanomechanical probing of the layer/substrate interface of an exfoliated InSe sheet on sapphire

    Get PDF
    Van der Waals (vdW) layered crystals and heterostructures have attracted substantial interest for potential applications in a wide range of emerging technologies. An important, but often overlooked, consideration in the development of implementable devices is phonon transport through the structure interfaces. Here we report on the interface properties of exfoliated InSe on a sapphire substrate. We use a picosecond acoustic technique to probe the phonon resonances in the InSe vdW layered crystal. Analysis of the nanomechanics indicates that the InSe is mechanically decoupled from the substrate and thus presents an elastically imperfect interface. A high degree of phonon isolation at the interface points toward applications in thermoelectric devices, or the inclusion of an acoustic transition layer in device design. These findings demonstrate basic properties of layered structures and so illustrate the usefulness of nanomechanical probing in nanolayer/nanolayer or nanolayer/substrate interface tuning in vdW heterostructures

    Low back pain around retirement age and physical occupational exposure during working life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical occupational exposure is a risk factor for low back pain in workers but the long term effects of exposure remain unclear. As several countries consider increasing the retirement age, further information on this topic is relevant. This study aimed to describe the prevalence of low back pain among middle aged and aging individuals in the general French population according to physical occupational exposure and retirement status.</p> <p>Methods</p> <p>The study population originated from the French national survey 'Enquête décennale santé 2002'. Low back pain for more than 30 days within the previous twelve months (LBP) was assessed using a French version of the Nordic questionnaire. Occupational exposure was self assessed. Subjects were classified as "exposed" if they were currently or had previously been exposed to handling of heavy loads and/or to tiring postures. The weighted prevalence of LBP was computed separately for men and women, for active (aged 45-59) and retiree (aged 55-74), according to 5-year age group and past/present occupational exposure.</p> <p>Results</p> <p>For active men, the prevalence of LBP was significantly higher in those currently or previously exposed (n = 1051) compared with those never exposed (n = 1183), respectively over 20% versus less than 11%. Among retired men, the prevalence of LBP tended towards equivalence with increasing age among those previously exposed (n = 748) and those unexposed (n = 599).</p> <p>Patterns were quite similar for women with a higher prevalence in exposed active women (n = 741) compared to unexposed (n = 1260): around 25% versus 15%. Similarly, differences between previously exposed (n = 430) and unexposed (n = 489) retired women tended to reduce with age.</p> <p>Conclusion</p> <p>The prevalence of LBP in active workers was associated with occupational exposure. The link with past exposure among retirees decreased with age. These results should be considered for policies dealing with prevention at the workplace and retirement.</p

    Human Probing Behavior of Aedes aegypti when Infected with a Life-Shortening Strain of Wolbachia

    Get PDF
    Mosquitoes transmit diseases when they are actively searching for a source of blood. This so called probing behavior comprises the “searching” time, the beginning of the feeding process until the first sign of blood can be seen within the insect body. The manipulation of this behavior can have important consequences for the mosquito's ability to transmit pathogens, such as dengue virus or Plasmodium. In this study we examined the probing behavior of the main vector of dengue viruses, Aedes aegypti, when infected with an intracellular bacterium, Wolbachia pipientis. This bacterium alters the probing behavior of older mosquitoes such that they take longer to find a feeding site and longer to imbibe blood, which may make them more susceptible to human defense responses. The bacterium appears to reduce mosquito feeding success by preventing the mosquito from successfully inserting its stylet into human skin. The old age onset of reduced mosquito feeding success due to Wolbachia could selectively promote a reduction in dengue transmission

    Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation.

    Get PDF
    Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence

    Comparative transcriptomic analysis reveals similarities and dissimilarities in saccharomyces cerevisiae wine strains response to nitrogen availability

    Get PDF
    Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12h, 24h and 96h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape-musts and the development of strategies to optimize yeast performance in industrial fermentations

    Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking.</p> <p>Methods</p> <p>We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography.</p> <p>Results</p> <p>When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions.</p> <p>Conclusion</p> <p>These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton.</p

    Exercise therapy for chronic low back pain:protocol for an individual participant data meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low back pain (LBP) is one of the leading causes of disability and has a major socioeconomic impact. Despite a large amount of research in the field, there remains uncertainty about the best treatment approach for chronic LBP, and identification of relevant patient subgroups is an important goal. Exercise therapy is a commonly used strategy to treat chronic low back pain and is one of several interventions that evidence suggests is moderately effective.</p> <p>In parallel with an update of the 2005 Cochrane review, we will undertake an individual participant data (IPD) meta-analysis, which will allow us to standardize analyses across studies and directly derive results, and to examine differential treatment effects across individuals to estimate how patients’ characteristics modify treatment benefit.</p> <p>Methods/design</p> <p>We will use standard systematic review methods advocated by the Cochrane Collaboration to identify relevant trials. We will include trials evaluating exercise therapy compared to any or no other interventions in adult non-specific chronic LBP. Our primary outcomes of interest include pain, functional status, and return-to-work/absenteeism. We will assess potential risk of bias for each study meeting selection criteria, using criteria and methods recommended by the Cochrane BRG.</p> <p>The original individual participant data will be requested from the authors of selected trials having moderate to low risk of bias. We will test original data and compile a master dataset with information about each trial mapped on a pre-specified framework, including reported characteristics of the study sample, exercise therapy characteristics, individual patient characteristics at baseline and all follow-up periods, subgroup and treatment effect modifiers investigated. Our analyses will include descriptive, study-level meta-analysis and meta-regression analyses of the overall treatment effect, and individual-level IPD meta-analyses of treatment effect modification. IPD meta-analyses will be conducted using a one-step approach where the IPD from all studies are modeled simultaneously while accounting for the clustering of participants with studies.</p> <p>Discussion</p> <p>We will analyze IPD across a large number of LBP trials. The resulting larger sample size and consistent presentation of data will allow additional analyses to explore patient-level heterogeneity in treatment outcomes and prognosis of chronic LBP.</p

    Natural variation in life history and aging phenotypes is associated with mitochondrial DNA deletion frequency in Caenorhabditis briggsae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations that impair mitochondrial functioning are associated with a variety of metabolic and age-related disorders. A barrier to rigorous tests of the role of mitochondrial dysfunction in aging processes has been the lack of model systems with relevant, naturally occurring mitochondrial genetic variation. Toward the goal of developing such a model system, we studied natural variation in life history, metabolic, and aging phenotypes as it relates to levels of a naturally-occurring heteroplasmic mitochondrial <it>ND5 </it>deletion recently discovered to segregate among wild populations of the soil nematode, <it>Caenorhabditis briggsae</it>. The normal product of <it>ND5 </it>is a central component of the mitochondrial electron transport chain and integral to cellular energy metabolism.</p> <p>Results</p> <p>We quantified significant variation among <it>C. briggsae </it>isolates for all phenotypes measured, only some of which was statistically associated with isolate-specific <it>ND5 </it>deletion frequency. We found that fecundity-related traits and pharyngeal pumping rate were strongly inversely related to <it>ND5 </it>deletion level and that <it>C. briggsae </it>isolates with high <it>ND5 </it>deletion levels experienced a tradeoff between early fecundity and lifespan. Conversely, oxidative stress resistance was only weakly associated with <it>ND5 </it>deletion level while ATP content was unrelated to deletion level. Finally, mean levels of reactive oxygen species measured <it>in vivo </it>showed a significant non-linear relationship with <it>ND5 </it>deletion level, a pattern that may be driven by among-isolate variation in antioxidant or other compensatory mechanisms.</p> <p>Conclusions</p> <p>Our findings suggest that the <it>ND5 </it>deletion may adversely affect fitness and mitochondrial functioning while promoting aging in natural populations, and help to further establish this species as a useful model for explicit tests of hypotheses in aging biology and mitochondrial genetics.</p

    Chronic kidney disease and valvular heart disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

    Get PDF
    Chronic kidney disease (CKD) is a major risk factor for valvular heart disease (VHD). Mitral annular and aortic valve calcifications are highly prevalent in CKD patients and commonly lead to valvular stenosis and regurgitation, as well as complications including conduction system abnormalities and endocarditis. VHD, especially mitral regurgitation and aortic stenosis, is associated with significantly reduced survival among CKD patients. Knowledge related to VHD in the general population is not always applicable to CKD patients because the pathophysiology may be different, and CKD patients have a high prevalence of comorbid conditions and elevated risk for periprocedural complications and mortality. This Kidney Disease: Improving Global Outcomes (KDIGO) review of CKD and VHD seeks to improve understanding of the epidemiology, pathophysiology, diagnosis, and treatment of VHD in CKD by summarizing knowledge gaps, areas of controversy, and priorities for research

    Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes

    Get PDF
    The thioredoxin system plays a predominant role in the control of cellular redox status. Thioredoxin reductase fuels the system with reducing power in the form of NADPH. The TORC1 complex promotes growth and protein synthesis when nutrients, particularly amino acids, are abundant. It also represses catabolic processes, like autophagy, which are activated during starvation. We analyzed the impact of yeast cytosolic thioredoxin reductase TRR1 deletion under different environmental conditions. It shortens chronological life span and reduces growth in grape juice fermentation. TRR1 deletion has a global impact on metabolism during fermentation. As expected, it reduces oxidative stress tolerance, but a compensatory response is triggered, with catalase and glutathione increasing. Unexpectedly, TRR1 deletion causes sensitivity to the inhibitors of the TORC1 pathway, such as rapamycin. This correlates with low Tor2p kinase levels and indicates a direct role of Trr1p in its stability. Markers of TORC1 activity, however, suggest increased TORC1 activity. The autophagy caused by nitrogen starvation is reduced in the trr1Δ mutant. Ribosomal protein Rsp6p is dephosphorylated in the presence of rapamycin. This dephosphorylation diminishes in the TRR1 deletion strain. These results show a complex network of interactions between thioredoxin reductase Trr1p and the processes controlled by TOR
    corecore