77 research outputs found

    Construction and evaluation of a whole genome microarray of Chlamydomonas reinhardtii

    Get PDF
    Toepel J, Albaum S, Arvidsson S, et al. Construction and evaluation of a whole genome microarray of Chlamydomonas reinhardtii. BMC Genomics. 2011;12(1): 579.ABSTRACT: BACKGROUND: Chlamydomonas reinhardtii is widely accepted as a model organism regarding photosynthesis, circadian rhythm, cell mobility, phototaxis, and biotechnology. The complete annotation of the genome allows transcriptomic studies, however a new microarray platform was needed. Based on the completed annotation of Chlamydomonas reinhardtii a new microarray on an Agilent platform was designed using an extended JGI 3.1 genome data set which included 15000 transcript models. RESULTS: In total 44000 probes were determined (3 independent probes per transcript model) covering 93% of the transcriptome. Alignment studies with the recently published AUGUSTUS 10.2 annotation confirmed 11000 transcript models resulting in a very good coverage of 70% of the transcriptome (17000). Following the estimation of 10000 predicted genes in Chlamydomonas reinhardtii our new microarray, nevertheless, covers the expected genome by 90-95%. CONCLUSIONS: To demonstrate the capabilities of the new microarray, we analyzed transcript levels for cultures grown under nitrogen as well as sulfate limitation, and compared the results with recently published microarray and RNA-seq data. We could thereby confirm previous results derived from data on nutrient-starvation induced gene expression of a group of genes related to protein transport and adaptation of the metabolism as well as genes related to efficient light harvesting, light energy distribution and photosynthetic electron transport

    RNA-Seq of Human Neurons Derived from iPS Cells Reveals Candidate Long Non-Coding RNAs Involved in Neurogenesis and Neuropsychiatric Disorders

    Get PDF
    Genome-wide expression analysis using next generation sequencing (RNA-Seq) provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs) provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormalities in transcription factors, DNA methylation, and chromatin modifiers lie at the heart of some neuropsychiatric disorders. As a preliminary step towards applying next generation sequencing using neurons derived from patient-specific iPSCs, we have carried out an RNA-Seq analysis on control human neurons. Dramatic changes in the expression of coding genes, long non-coding RNAs (lncRNAs), pseudogenes, and splice isoforms were seen during the transition from pluripotent stem cells to early differentiating neurons. A number of genes that undergo radical changes in expression during this transition include candidates for schizophrenia (SZ), bipolar disorder (BD) and autism spectrum disorders (ASD) that function as transcription factors and chromatin modifiers, such as POU3F2 and ZNF804A, and genes coding for cell adhesion proteins implicated in these conditions including NRXN1 and NLGN1. In addition, a number of novel lncRNAs were found to undergo dramatic changes in expression, one of which is HOTAIRM1, a regulator of several HOXA genes during myelopoiesis. The increase we observed in differentiating neurons suggests a role in neurogenesis as well. Finally, several lncRNAs that map near SNPs associated with SZ in genome wide association studies also increase during neuronal differentiation, suggesting that these novel transcripts may be abnormally regulated in a subgroup of patients

    How reproducible are surface areas calculated from the BET equation?

    Get PDF
    Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible

    Historical Archaeologies of the American West

    Full text link
    corecore