72 research outputs found

    Operational forecasting of daily summer maximum and minimum temperatures in the Valencia Region

    Get PDF
    Extreme-temperature events have a great impact on human society. Thus, knowledge of summer temperatures can be very useful both for the general public and for organizations whose workers operate in the open. An accurate forecasting of summer maximum and minimum temperatures could help to predict heatwave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The objective of this work is to evaluate the skill of the regional atmospheric and modelling system (RAMS) model in determining daily summer maximum and minimum temperatures in the Valencia Region. For this, we have used the real-time configuration of this model currently running at the Centro de Estudios Ambientales de Mediterráneo Foundation. This operational system is run twice a day, and both runs have a 3-day forecast range. To carry out the verification of the model in this work, the information generated by the system has been broken into individual simulation days for a specific daily run of the model. Moreover, we have analysed the summer forecast period from 1 June to 31 August for 2007, 2008, 2009 and 2010. The results indicate good agreement between observed and simulated maximum temperatures, with RMSE in general near 2 °C both for coastal and inland stations. For this parameter, the model shows a negative bias around −1.5 °C in the coast, while the opposite trend is observed inland. In addition, RAMS also shows good results in forecasting minimum temperatures for coastal locations, with bias lower than 1 °C and RMSE below 2 °C. However, the model presents some difficulties for this parameter inland, where bias higher than 3 °C and RMSE of about 4 °C have been found. Besides, there is little difference in both temperatures forecasted within the two daily RAMS cycles and that RAMS is very stable in maintaining the forecast performance at least for three forecast days

    Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency

    Get PDF
    Induced pluripotent stem cells (iPSCs) are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC generation from acute myeloid or lymphoid leukemias (ALL) has not been achieved. We attempted to generate iPSCs from different subtypes of B-ALL to address the developmental impact of leukemic fusion genes. OKSM(L)-expressing mono/polycistronic-, retroviral/lentiviral/episomal-, and Sendai virus vector-based reprogramming strategies failed to render iPSCs in vitro and in vivo. Addition of transcriptomic-epigenetic reprogramming ‘‘boosters’’ also failed to generate iPSCs from B cell blasts and B-ALL lines, and when iPSCs emerged they lacked leukemic fusion genes, demonstrating non-leukemic myeloid origin. Conversely, MLL-AF4-overexpressing hematopoietic stem cells/B progenitors were successfully reprogrammed, indicating that B cell origin and leukemic fusion gene were not reprogramming barriers. Global transcriptome/DNA methylome profiling suggested a developmental/differentiation refractoriness of MLL-rearranged B-ALL to reprogramming into pluripotency

    Differential Expression of PGC-1α and Metabolic Sensors Suggest Age-Dependent Induction of Mitochondrial Biogenesis in Friedreich Ataxia Fibroblasts

    Get PDF
    11 pages, 6 figures. PMID:21687738[PubMed] PMCID: PMC3110204BACKGROUND: Friedreich's ataxia (FRDA) is a mitochondrial rare disease, which molecular origin is associated with defect in the expression of frataxin. The pathological consequences are degeneration of nervous system structures and cardiomyopathy with necrosis and fibrosis, among others. PRINCIPAL FINDINGS: Using FRDA fibroblasts we have characterized the oxidative stress status and mitochondrial biogenesis. We observed deficiency of MnSOD, increased ROS levels and low levels of ATP. Expression of PGC-1α and mtTFA was increased and the active form of the upstream signals p38 MAPK and AMPK in fibroblasts from two patients. Interestingly, the expression of energetic factors correlated with the natural history of disease of the patients, the age when skin biopsy was performed and the size of the GAA expanded alleles. Furthermore, idebenone inhibit mitochondriogenic responses in FRDA cells. CONCLUSIONS: The induction of mitochondrial biogenesis in FRDA may be a consequence of the mitochondrial impairment associated with disease evolution. The increase of ROS and the involvement of the oxidative phosphorylation may be an early event in the cell pathophysiology of frataxin deficiency, whereas increase of mitochondriogenic response might be a later phenomenon associated to the individual age and natural history of the disease, being more evident as the patient age increases and disease evolves. This is a possible explanation of heart disease in FRDA.This work was supported by grants SAF2008-01338, SAF2006-01047 and SAF2009-07063 from the Ministerio de Ciencia e Innovación and financial support from the CIBERER (Biomedical Network Research Center for Rare Diseases). A.G. thanks the Conselleria de Educación of the Generalitat Valenciana for the financial support by grants GVPRE/2008/154. A.B.-A. is the recipient of a JAE-CSIC predoctoral fellowship. The CIBERER is an initiative of the Instituto de Salud Carlos III and INGENIO 2010.Peer reviewe

    A characterization of ASAS-SN core-collapse supernova environments with VLT+MUSE I. Sample selection, analysis of local environments, and correlations with light curve properties

    Get PDF
    The analysis of core-collapse supernova (CCSN) environments can provide important information on the life cycle of massive stars and constrain the progenitor properties of these powerful explosions. The MUSE instrument at the Very Large Telescope (VLT) enables detailed local environment constraints of the progenitors of large samples of CCSNe. Using a homogeneous SN sample from the All-Sky Automated Survey for Supernovae (ASAS-SN) survey, an untargeted and spectroscopically complete transient survey, has enabled us to perform a minimally biased statistical analysis of CCSN environments. Aims. We analyze 111 galaxies observed by MUSE that hosted 112 CCSNe-78 II, nine IIn, seven IIb, four Ic, seven Ib, three Ibn, two Ic-BL, one ambiguous Ibc, and one superluminous SN-detected or discovered by the ASAS-SN survey between 2014 and 2018. The majority of the galaxies were observed by the All-weather MUse Supernova Integral field Nearby Galaxies (AMUSING) survey. Here we analyze the immediate environment around the SN locations and compare the properties between the different CCSN types and their light curves. Methods. We used stellar population synthesis and spectral fitting techniques to derive physical parameters for all H ¯II regions detected within each galaxy, including the star formation rate (SFR), Hα equivalent width (EW), oxygen abundance, and extinction. Results. We found that stripped-envelope supernovae (SESNe) occur in environments with a higher median SFR, Hα EW, and oxygen abundances than SNe II and SNe IIn/Ibn. Most of the distributions have no statistically significant differences, except between oxygen abundance distributions of SESNe and SNe II, and between Hα EW distributions of SESNe and SNe II. The distributions of SNe II and IIn are very similar, indicating that these events explode in similar environments. For the SESNe, SNe Ic have higher median SFRs, Hα EWs, and oxygen abundances than SNe Ib. SNe IIb have environments with similar SFRs and Hα EWs to SNe Ib, and similar oxygen abundances to SNe Ic. We also show that the postmaximum decline rate, s, of SNe II correlates with the Hα EW, and that the luminosity and the Δ m15 parameter of SESNe correlate with the oxygen abundance, Hα EW, and SFR at their environments. This suggests a connection between the explosion mechanisms of these events to their environment properties

    Overexpression of Human and Fly Frataxins in Drosophila Provokes Deleterious Effects at Biochemical, Physiological and Developmental Levels

    Get PDF
    10 pages, 5 figures. 21779322[PubMed] PMCID: PMC3136927BACKGROUND: Friedreich's ataxia (FA), the most frequent form of inherited ataxias in the Caucasian population, is caused by a reduced expression of frataxin, a highly conserved protein. Model organisms have contributed greatly in the efforts to decipher the function of frataxin; however, the precise function of this protein remains elusive. Overexpression studies are a useful approach to investigate the mechanistic actions of frataxin; however, the existing literature reports contradictory results. To further investigate the effect of frataxin overexpression, we analyzed the consequences of overexpressing human (FXN) and fly (FH) frataxins in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS: We obtained transgenic flies that overexpressed human or fly frataxins in a general pattern and in different tissues using the UAS-GAL4 system. For both frataxins, we observed deleterious effects at the biochemical, histological and behavioral levels. Oxidative stress is a relevant factor in the frataxin overexpression phenotypes. Systemic frataxin overexpression reduces Drosophila viability and impairs the normal embryonic development of muscle and the peripheral nervous system. A reduction in the level of aconitase activity and a decrease in the level of NDUF3 were also observed in the transgenic flies that overexpressed frataxin. Frataxin overexpression in the nervous system reduces life span, impairs locomotor ability and causes brain degeneration. Frataxin aggregation and a misfolding of this protein have been shown not to be the mechanism that is responsible for the phenotypes that have been observed. Nevertheless, the expression of human frataxin rescues the aconitase activity in the fh knockdown mutant. CONCLUSION/SIGNIFICANCE: Our results provide in vivo evidence of a functional equivalence for human and fly frataxins and indicate that the control of frataxin expression is important for treatments that aim to increase frataxin levels.This work was supported by grants from Fondo Investigaciones Sanitarias (ISCIII06- PI0677) and La Fundació la Marató TV3 (exp 101932) of Spain. JVL is supported by the European Friedreich's Ataxia Consortium for Translational Studies. SS is a recipient of a fellowship from Ministerio de Ciencia e Innovación of Spain.Peer reviewe

    Autosomal recessive cerebellar ataxias

    Get PDF
    Autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological disorders involving both central and peripheral nervous system, and in some case other systems and organs, and characterized by degeneration or abnormal development of cerebellum and spinal cord, autosomal recessive inheritance and, in most cases, early onset occurring before the age of 20 years. This group encompasses a large number of rare diseases, the most frequent in Caucasian population being Friedreich ataxia (estimated prevalence 2–4/100,000), ataxia-telangiectasia (1–2.5/100,000) and early onset cerebellar ataxia with retained tendon reflexes (1/100,000). Other forms ARCA are much less common. Based on clinicogenetic criteria, five main types ARCA can be distinguished: congenital ataxias (developmental disorder), ataxias associated with metabolic disorders, ataxias with a DNA repair defect, degenerative ataxias, and ataxia associated with other features. These diseases are due to mutations in specific genes, some of which have been identified, such as frataxin in Friedreich ataxia, α-tocopherol transfer protein in ataxia with vitamin E deficiency (AVED), aprataxin in ataxia with oculomotor apraxia (AOA1), and senataxin in ataxia with oculomotor apraxia (AOA2). Clinical diagnosis is confirmed by ancillary tests such as neuroimaging (magnetic resonance imaging, scanning), electrophysiological examination, and mutation analysis when the causative gene is identified. Correct clinical and genetic diagnosis is important for appropriate genetic counseling and prognosis and, in some instances, pharmacological treatment. Due to autosomal recessive inheritance, previous familial history of affected individuals is unlikely. For most ARCA there is no specific drug treatment except for coenzyme Q10 deficiency and abetalipoproteinemia

    A Customized Pigmentation SNP Array Identifies a Novel SNP Associated with Melanoma Predisposition in the SLC45A2 Gene

    Get PDF
    As the incidence of Malignant Melanoma (MM) reflects an interaction between skin colour and UV exposure, variations in genes implicated in pigmentation and tanning response to UV may be associated with susceptibility to MM. In this study, 363 SNPs in 65 gene regions belonging to the pigmentation pathway have been successfully genotyped using a SNP array. Five hundred and ninety MM cases and 507 controls were analyzed in a discovery phase I. Ten candidate SNPs based on a p-value threshold of 0.01 were identified. Two of them, rs35414 (SLC45A2) and rs2069398 (SILV/CKD2), were statistically significant after conservative Bonferroni correction. The best six SNPs were further tested in an independent Spanish series (624 MM cases and 789 controls). A novel SNP located on the SLC45A2 gene (rs35414) was found to be significantly associated with melanoma in both phase I and phase II (P<0.0001). None of the other five SNPs were replicated in this second phase of the study. However, three SNPs in TYR, SILV/CDK2 and ADAMTS20 genes (rs17793678, rs2069398 and rs1510521 respectively) had an overall p-value<0.05 when considering the whole DNA collection (1214 MM cases and 1296 controls). Both the SLC45A2 and the SILV/CDK2 variants behave as protective alleles, while the TYR and ADAMTS20 variants seem to function as risk alleles. Cumulative effects were detected when these four variants were considered together. Furthermore, individuals carrying two or more mutations in MC1R, a well-known low penetrance melanoma-predisposing gene, had a decreased MM risk if concurrently bearing the SLC45A2 protective variant. To our knowledge, this is the largest study on Spanish sporadic MM cases to date

    Insight of brain degenerative protein modifications in the pathology of neurodegeneration and dementia by proteomic profiling

    Full text link

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore