285 research outputs found

    Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth

    Get PDF
    A systems approach using 13C metabolic flux analysis (MFA), non-targeted tracer fate detection (NTFD), and transcriptional profiling was applied to investigate the role of oncogenic K-Ras in metabolic transformation.K-Ras transformed cells exhibit an increased glycolytic rate and lower flux through the oxidative tricarboxylic acid (TCA) cycle.K-Ras transformed cells show a relative increase in glutamine anaplerosis and reductive TCA metabolism.Transcriptional changes driven by oncogenic K-Ras suggest control nodes associated with the metabolic reprogramming of cancer cells

    A New Heterobinuclear FeIIICuII Complex with a Single Terminal FeIII–O(phenolate) Bond. Relevance to Purple Acid Phosphatases and Nucleases

    Get PDF
    A novel heterobinuclear mixed valence complex [Fe^IIICu^II(BPBPMP)(OAc)_2]ClO_4, 1, with the unsymmetrical N_5O_2 donor ligand 2-bis[{(2-pyridylmethyl)aminomethyl}-6-{(2-hydroxybenzyl)(2-pyridylmethyl)} aminomethyl]-4-methylphenol (H_2BPBPMP) has been synthesized and characterized. A combination of data from mass spectrometry, potentiometric titrations, X-ray absorption and electron paramagnetic resonance spectroscopy, as well as kinetics measurements indicates that in ethanol/water solutions an [Fe^III-(nu)OH-Cu^IIOH_2]+ species is generated which is the likely catalyst for 2,4-bis(dinitrophenyl)phosphate and DNA hydrolysis. Insofar as the data are consistent with the presence of an Fe_III-bound hydroxide acting as a nucleophile during catalysis, 1 presents a suitable mimic for the hydrolytic enzyme purple acid phosphatase. Notably, 1 is significantly more reactive than its isostructural homologues with different metal composition (Fe^IIIM^II, where M^II is Zn^II, Mn^II, Ni^II,or Fe^II). Of particular interest is the observation that cleavage of double-stranded plasmid DNA occurs even at very low concentrations of 1 (2.5 nuM), under physiological conditions (optimum pH of 7.0), with a rate enhancement of 2.7 x 10^7 over the uncatalyzed reaction. Thus, 1 is one of the most effective model complexes to date, mimicking the function of nucleases

    1Identification of genes differentially expressed in the embryonic pig cerebral cortex before and after appearance of gyration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian evolution is characterized by a progressive expansion of the surface area of the cerebral cortex, an increase that is accompanied by gyration of the cortical surface. The mechanisms controlling this gyration process are not well characterized but mutational analyses indicate that genes involved in neuronal migration play an important function. Due to the lack of gyration of the rodent brain it is important to establish alternative models to examine brain development during the gyration process. The pig brain is gyrated and accordingly is a candidate alternative model.</p> <p>Findings</p> <p>In this study we have identified genes differentially expressed in the pig cerebral cortex before and after appearance of gyration. Pig cortical tissue from two time points in development representing a non-folded, lissencephalic, brain (embryonic day 60) and primary-folded, gyrencephalic, brain (embryonic day 80) were examined by whole genome expression microarray studies. 91 differentially expressed transcripts (fold change >3) were identified. 84 transcripts were annotated and encoding proteins involved in for example neuronal migration, calcium binding, and cytoskeletal structuring. Quantitative real-time PCR was used to confirm the regulation of a subset of the identified genes.</p> <p>Conclusion</p> <p>This study provides identification of genes which are differentially expressed in the pig cerebral cortex before and after appearance of brain gyration. The identified genes include novel candidate genes which could have functional importance for brain development.</p

    Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes

    Get PDF
    Background Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL) from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the Affymetrix® GeneChip® Bovine Genome Array with 24,072 gene probe sets representing more than 23,000 gene transcripts. Results Control and infected animals had similar mean white blood cell counts. However, the mean number of lymphocytes was significantly increased in the infected group relative to the control group (P = 0.001), while the mean number of monocytes was significantly decreased in the BTB group (P = 0.002). Hierarchical clustering analysis using gene expression data from all 5,388 detectable mRNA transcripts unambiguously partitioned the animals according to their disease status. In total, 2,960 gene transcripts were differentially expressed (DE) between the infected and control animal groups (adjusted P-value threshold ≤ 0.05); with the number of gene transcripts showing decreased relative expression (1,563) exceeding those displaying increased relative expression (1,397). Systems analysis using the Ingenuity® Systems Pathway Analysis (IPA) Knowledge Base revealed an over-representation of DE genes involved in the immune response functional category. More specifically, 64.5% of genes in the affects immune response subcategory displayed decreased relative expression levels in the infected animals compared to the control group. Conclusions This study demonstrates that genome-wide transcriptional profiling of PBL can distinguish active M. bovis-infected animals from control non-infected animals. Furthermore, the results obtained support previous investigations demonstrating that mycobacterial infection is associated with host transcriptional suppression. These data support the use of transcriptomic technologies to enable the identification of robust, reliable transcriptional markers of active M. bovis infection.This work was supported by Investigator Grants from Science Foundation Ireland (Nos: SFI/01/F.1/B028 and SFI/08/IN.1/B2038), a Research Stimulus Grant from the Department of Agriculture, Fisheries and Food (No: RSF 06 405) and a European Union Framework 7 Project Grant (No: KBBE-211602-MACROSYS). KEK is supported by the Irish Research Council for Science, Engineering and Technology (IRCSET) funded Bioinformatics and Systems Biology PhD Programme http://bioinfo-casl.ucd.ie/PhD

    Update on the third international stroke trial (IST-3) of thrombolysis for acute ischaemic stroke and baseline features of the 3035 patients recruited

    Get PDF
    Intravenous recombinant tissue plasminogen activator (rtPA) is approved in Europe for use in patients with acute ischaemic stroke who meet strictly defined criteria. IST-3 sought to improve the external validity and precision of the estimates of the overall treatment effects (efficacy and safety) of rtPA in acute ischaemic stroke, and to determine whether a wider range of patients might benefit

    Definitions and factors associated with subthreshold depressive conditions:a systematic review

    Get PDF
    BACKGROUND: Subthreshold depressive disorders (minor and subthrehold depression) have been defined in a wide range of forms, varying on the number of symptoms and duration required. Disability associated with these conditions has also been reported. Our aim was to review the different definitions and to determine factors associated with these conditions in order to clarify the nosological implications of these disorders. METHODS: A Medline search was conducted of the published literature between January 2001 and September 2011. Bibliographies of the retrieved papers were also analysed. RESULTS: There is a wide heterogeneity in the definition and diagnostic criteria of minor and subthreshold depression. Minor depression was defined according to DSM-IV criteria. Regarding subthreshold depression, also called subclinical depression or subsyndromal symptomatic depression, between 2 and 5 depressive symptoms were required for the diagnosis, and a minimum duration of 2 weeks. Significant impairment associated with subthreshold depressive conditions, as well as comorbidity with other mental disorders, has been described. CONCLUSIONS: Depression as a disorder is better explained as a spectrum rather than as a collection of discrete categories. Minor and subthreshold depression are common conditions and patients falling below the diagnostic threshold experience significant difficulties in functioning and a negative impact on their quality of life. Current diagnostic systems need to reexamine the thresholds for depressive disorders and distinguish them from ordinary feelings of sadness

    TACOA – Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach

    Get PDF
    Diaz NN, Krause L, Goesmann A, Niehaus K, Nattkemper TW. TACOA - Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinformatics. 2009;10(1):56.Background: Metagenomics, or the sequencing and analysis of collective genomes (metagenomes) of microorganisms isolated from an environment, promises direct access to the "unculturable majority". This emerging field offers the potential to lay solid basis on our understanding of the entire living world. However, the taxonomic classification is an essential task in the analysis of metagenomics data sets that it is still far from being solved. We present a novel strategy to predict the taxonomic origin of environmental genomic fragments. The proposed classifier combines the idea of the k-nearest neighbor with strategies from kernel-based learning. Results Our novel strategy was extensively evaluated using the leave-one-out cross validation strategy on fragments of variable length (800 bp – 50 Kbp) from 373 completely sequenced genomes. TACOA is able to classify genomic fragments of length 800 bp and 1 Kbp with high accuracy until rank class. For longer fragments ≥ 3 Kbp accurate predictions are made at even deeper taxonomic ranks (order and genus). Remarkably, TACOA also produces reliable results when the taxonomic origin of a fragment is not represented in the reference set, thus classifying such fragments to its known broader taxonomic class or simply as "unknown". We compared the classification accuracy of TACOA with the latest intrinsic classifier PhyloPythia using 63 recently published complete genomes. For fragments of length 800 bp and 1 Kbp the overall accuracy of TACOA is higher than that obtained by PhyloPythia at all taxonomic ranks. For all fragment lengths, both methods achieved comparable high specificity results up to rank class and low false negative rates are also obtained. Conclusion: An accurate multi-class taxonomic classifier was developed for environmental genomic fragments. TACOA can predict with high reliability the taxonomic origin of genomic fragments as short as 800 bp. The proposed method is transparent, fast, accurate and the reference set can be easily updated as newly sequenced genomes become available. Moreover, the method demonstrated to be competitive when compared to the most current classifier PhyloPythia and has the advantage that it can be locally installed and the reference set can be kept up-to-date. Background

    Genetics Meets Metabolomics: A Genome-Wide Association Study of Metabolite Profiles in Human Serum

    Get PDF
    The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations of frequent single nucleotide polymorphisms (SNPs) with considerable differences in the metabolic homeostasis of the human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to 28% of the variance can be explained (p-values 10−16 to 10−21). We identified four genetic variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD) where the corresponding metabolic phenotype (metabotype) clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge

    Molecular epidemiology of methicillin-resistant Staphylococcus aureus isolated from Australian veterinarians

    Get PDF
    This work investigated the molecular epidemiology and antimicrobial resistance of methicillinresistant Staphylococcus aureus (MRSA) isolated from veterinarians in Australia in 2009. The collection (n = 44) was subjected to extensive molecular typing (MLST, spa, SCCmec, dru, PFGE, virulence and antimicrobial resistance genotyping) and antimicrobial resistance phenotyping by disk diffusion. MRSA was isolated from Australian veterinarians representing various occupational emphases. The isolate collection was dominated by MRSA strains belonging to clonal complex (CC) 8 and multilocus sequence type (ST) 22. CC8 MRSA (ST8-IV [2B], spa t064; and ST612-IV [2B] , spa variable,) were strongly associated with equine practice veterinarians (OR = 17.5, 95% CI = 3.3-92.5, P &lt; 0.001) and were often resistant to gentamicin and rifampicin. ST22-IV [2B], spa variable, were strongly associated with companion animal practice veterinarians (OR = 52.5, 95% CI = 5.2-532.7, P &lt; 0.001) and were resistant to ciprofloxacin. A single pig practice veterinarian carried ST398-V [5C2], spa t1451. Equine practice and companion animal practice veterinarians frequently carried multiresistant-CC8 and ST22 MRSA, respectively, whereas only a single swine specialist carried MRSA ST398. The presence of these strains in veterinarians may be associated with specific antimicrobial administration practices in each animal species
    corecore