142 research outputs found

    Information system for monitoring and assessing stress among medical students

    Get PDF
    Author ProofThe severe or prolonged exposure to stress-inducing factors in occupational and academic settings is a growing concern. The literature describes several potentially stressful moments experienced by medical students throughout the course, affecting cognitive functioning and learning. In this paper, we introduce the EUSTRESS Solution, that aims to create an Information System to monitor and assess, continuously and in real-time, the stress levels of the individuals in order to predict chronic stress. The Information System will use a measuring instrument based on wearable devices and machine learning techniques to collect and process stress-related data from the individual without his/her explicit interaction. A big database has been built through physiological, psychological, and behavioral assessments of medical students. In this paper, we focus on heart rate and heart rate variability indices, by comparing baseline and stress condition. In order to develop a predictive model of stress, we performed different statistical tests. Preliminary results showed the neural network had the better model fit. As future work, we will integrate salivary samples and self-report questionnaires in order to develop a more complex and intelligent model.QVida+ project (Estimação Contínua de Qualidade de Vida para Auxílio Eficaz à Decisão Clínica), funded by European Structural funds (FEDER-003446), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement

    Clinical decision modeling system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Decision analysis techniques can be applied in complex situations involving uncertainty and the consideration of multiple objectives. Classical decision modeling techniques require elicitation of too many parameter estimates and their conditional (joint) probabilities, and have not therefore been applied to the problem of identifying high-performance, cost-effective combinations of clinical options for diagnosis or treatments where many of the objectives are unknown or even unspecified.</p> <p>Methods</p> <p>We designed a Java-based software resource, the Clinical Decision Modeling System (CDMS), to implement Naïve Decision Modeling, and provide a use case based on published performance evaluation measures of various strategies for breast and lung cancer detection. Because cost estimates for many of the newer methods are not yet available, we assume equal cost. Our use case reveals numerous potentially high-performance combinations of clinical options for the detection of breast and lung cancer.</p> <p>Results</p> <p>Naïve Decision Modeling is a highly practical applied strategy which guides investigators through the process of establishing evidence-based integrative translational clinical research priorities. CDMS is not designed for clinical decision support. Inputs include performance evaluation measures and costs of various clinical options. The software finds trees with expected emergent performance characteristics and average cost per patient that meet stated filtering criteria. Key to the utility of the software is sophisticated graphical elements, including a tree browser, a receiver-operator characteristic surface plot, and a histogram of expected average cost per patient. The analysis pinpoints the potentially most relevant pairs of clinical options ('critical pairs') for which empirical estimates of conditional dependence may be critical. The assumption of independence can be tested with retrospective studies prior to the initiation of clinical trials designed to estimate clinical impact. High-performance combinations of clinical options may exist for breast and lung cancer detection.</p> <p>Conclusion</p> <p>The software could be found useful in simplifying the objective-driven planning of complex integrative clinical studies without requiring a multi-attribute utility function, and it could lead to efficient integrative translational clinical study designs that move beyond simple pair wise competitive studies. Collaborators, who traditionally might compete to prioritize their own individual clinical options, can use the software as a common framework and guide to work together to produce increased understanding on the benefits of using alternative clinical combinations to affect strategic and cost-effective clinical workflows.</p

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    Get PDF
    In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 10^{9} Mo. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded

    The Event Horizon Telescope Image of the Quasar NRAO 530

    Get PDF
    We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%-8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μas along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin

    Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature- A ring with azimuthal brightness asymmetry- A nd to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009-2017 to be consistent with a persistent asymmetric ring of ∼40 μas diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin

    Event Horizon Telescope observations of the jet launching and collimation in Centaurus A

    Get PDF
    Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (rg ≡ GM/c2) scales in nearby sources1. Centaurus A is the closest radio-loud source to Earth2. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations3, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses5,6

    Oligodendrocytes: biology and pathology

    Get PDF
    Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so
    corecore