135 research outputs found

    Presence of qnr gene in Escherichia coli and Klebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quinolone resistance in <it>Enterobacteriaceae </it>results mainly from mutations in type II DNA topoisomerase genes and/or changes in the expression of outer membrane and efflux pumps. Several recent studies have indicated that plasmid-mediated resistance mechanisms also play a significant role in fluoroquinolone resistance, and its prevalence is increasing worldwide. In China, the presence of the <it>qnr </it>gene in the clinical isolates of <it>Enterobacteriaceae </it>has been reported, but this transmissible quinolone resistance gene has not been detected in strains isolated singly from pediatric patients. Because quinolones associated with a variety of adverse side effects on children, they are not authorized for pediatric use. This study therefore aimed to investigate the presence of the <it>qnr </it>gene in clinical isolates of <it>E. coli </it>and <it>K. pneumoniae </it>from pediatric patients in China.</p> <p>Methods</p> <p>A total 213 of non-repetitive clinical isolates resistant to ciprofloxacin from <it>E. coli </it>and <it>K. pneumoniae </it>were collected from hospitalized patients at five children's hospital in Beijing, Shanghai, Guangzhou, and Chongqing. The isolates were screened for the plasmid-mediated quinolone resistance genes of <it>qnrA</it>, <it>qnrB</it>, and <it>qnrS </it>by PCR. Transferability was examined by conjugation with the sodium azide-resistant <it>E. coli </it>J53. All <it>qnr</it>-positive were analyzed for clonality by enterobacterial repetitive intergenic consensus (ERIC)-PCR.</p> <p>Results</p> <p>The study found that 19 ciprofloxacin-resistant clinical isolates of <it>E. coli </it>and <it>K. pneumoniae </it>were positive for the <it>qnr </it>gene, and most of the <it>qnr </it>positive strains were ESBL producers. Conjugation experiments showed that quinolone resitance could be transferred to recipients. Apart from this, different DNA banding patterns were obtained by ERIC-PCR from positive strains, which means that most of them were not clonally related.</p> <p>Conclusion</p> <p>This report on transferable fluoroquinolone resistance due to the <it>qnr </it>gene among <it>E. coli </it>and <it>K. pneumoniae </it>strains indicated that plasmid-mediated quinolone resistance has emerged in pediatric patients in China.</p

    Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases

    Get PDF
    Current antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.National Institutes of Health (U.S.) (New Innovator Award 1DP2OD008435)National Centers for Systems Biology (U.S.) (Grant 1P50GM098792)United States. Defense Threat Reduction Agency (HDTRA1-14-1-0007)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (W911NF13D0001)National Institute of General Medical Sciences (U.S.) (Interdepartmental Biotechnology Training Program 5T32 GM008334)Fonds de la recherche en sante du Quebec (Master's Training Award

    Choice of generic antihypertensive drugs for the primary prevention of cardiovascular disease - A cost-effectiveness analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypertension is one of the leading causes of cardiovascular disease (CVD). A range of antihypertensive drugs exists, and their prices vary widely mainly due to patent rights. The objective of this study was to explore the cost-effectiveness of different generic antihypertensive drugs as first, second and third choice for primary prevention of cardiovascular disease.</p> <p>Methods</p> <p>We used the Norwegian Cardiovascular Disease model (NorCaD) to simulate the cardiovascular life of patients from hypertension without symptoms until they were all dead or 100 years old. The risk of CVD events and costs were based on recent Norwegian sources.</p> <p>Results</p> <p>In single-drug treatment, all antihypertensives are cost-effective compared to no drug treatment. In the base-case analysis, the first, second and third choice of antihypertensive were calcium channel blocker, thiazide and angiotensin-converting enzyme inhibitor. However the sensitivity and scenario analyses indicated considerable uncertainty in that angiotensin receptor blockers as well as, angiotensin-converting enzyme inhibitors, beta blockers and thiazides could be the most cost-effective antihypertensive drugs.</p> <p>Conclusions</p> <p>Generic antihypertensives are cost-effective in a wide range of risk groups. There is considerable uncertainty, however, regarding which drug is the most cost-effective.</p

    Tracking the Expression of Excitatory and Inhibitory Neurotransmission-Related Proteins and Neuroplasticity Markers after Noise Induced Hearing Loss

    Get PDF
    Excessive exposure to loud noise can damage the cochlea and create a hearing loss. These pathologies coincide with a range of CNS changes including reorganisation of frequency representation, alterations in the pattern of spontaneous activity and changed expression of excitatory and inhibitory neurotransmitters. Moreover, damage to the cochlea is often accompanied by acoustic disorders such as hyperacusis and tinnitus, suggesting that one or more of these neuronal changes may be involved in these disorders, although the mechanisms remain unknown. We tested the hypothesis that excessive noise exposure increases expression of markers of excitation and plasticity, and decreases expression of inhibitory markers over a 32-day recovery period. Adult rats (n = 25) were monaurally exposed to a loud noise (16 kHz, 1/10th octave band pass (115 dB SPL)) for 1-hour, or left as non-exposed controls (n = 5). Animals were euthanased at either 0, 4, 8, 16 or 32 days following acoustic trauma. We used Western Blots to quantify protein levels of GABAA receptor subunit α1 (GABAAα1), Glutamic-Acid Decarboxylase-67 (GAD-67), N-Methyl-D-Aspartate receptor subunit 2A (NR2A), Calbindin (Calb1) and Growth Associated Protein 43 (GAP-43) in the Auditory Cortex (AC), Inferior Colliculus (IC) and Dorsal Cochlear Nucleus (DCN). Compared to sham-exposed controls, noise-exposed animals had significantly (p<0.05): lower levels of GABAAα1 in the contralateral AC at day-16 and day-32, lower levels of GAD-67 in the ipsilateral DCN at day-4, lower levels of Calb1 in the ipsilateral DCN at day-0, lower levels of GABAAα1 in the ipsilateral AC at day-4 and day-32. GAP-43 was reduced in the ipsilateral AC for the duration of the experiment. These complex fluctuations in protein expression suggests that for at least a month following acoustic trauma the auditory system is adapting to a new pattern of sensory input

    Ameliorative Effects of Dimetylthiourea and N-Acetylcysteine on Nanoparticles Induced Cyto-Genotoxicity in Human Lung Cancer Cells-A549

    Get PDF
    We study the ameliorative potential of dimetylthiourea (DMTU), an OH• radical trapper and N-acetylcysteine (NAC), a glutathione precursor/H2O2 scavenger against titanium dioxide nanoparticles (TiO2-NPs) and multi-walled carbon nanotubes (MWCNTs) induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml) of either of TiO2-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure), while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure). Investigations were carried out for cell viability, generation of reactive oxygen species (ROS), micronuclei (MN), and expression of markers of oxidative stress (HSP27, CYP2E1), genotoxicity (P53) and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d) activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO2-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO2-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages

    Cost effectiveness of support for people starting a new medication for a long term condition through community pharmacies: an economic evaluation of the New Medicine Service (NMS) compared with normal practice

    Get PDF
    Background: The English community pharmacy New Medicine Service (NMS) significantly increases patient adherence to medicines, compared with normal practice. We examined the cost-effectiveness of NMS compared with normal practice by combining adherence improvement and intervention costs with the effect of increased adherence on patient outcomes and healthcare costs. Methods: We developed Markov models for diseases targeted by the NMS (hypertension, type 2 diabetes, chronic obstructive pulmonary disease, asthma and antiplatelet regimens) to assess the impact of patients’ non-adherence. Clinical event probability, treatment pathway, resource-use and costs were extracted from literature and costing tariffs. Incremental costs and outcomes associated with each disease were incorporated additively into a composite probabilistic model and combined with adherence rates and intervention costs from the trial. Costs per extra quality-adjusted-life-year(QALY) were calculated from the perspective of NHS England, using a lifetime horizon. Results: NMS generated a mean of 0.05 (95%CI: 0.00, 0.13) more QALYs per patient, at a mean reduced cost of -£144 (95%CI: -769, 73). The NMS dominates normal practice with probability of 0.78 (ICER: - £3166 per QALY). NMS has a 96.7% probability of cost-effectiveness compared with normal practice at a willingness-to-pay of £20000 per QALY. Sensitivity analysis demonstrated that targeting each disease with NMS has a probability over 0.90 of cost-effectiveness compared with normal practice at a willingness-to-pay of £20000 per QALY. Conclusions: Our study suggests that the New Medicine Service increased patient medicine adherence compared with normal practice, which translated into increased health gain at reduced overall cost

    Modelling and Verification of Timed Robotic Controllers

    Get PDF
    Designing robotic systems can be very challenging, yet controllers are often specified using informal notations with development driven primarily by simulations and physical experiments, without relation to abstract models of requirements. The ability to perform formal analysis and replicate results across different robotic platforms is hindered by the lack of well-defined formal notations. In this paper we present a timed state-machine based formal notation for robotics that is informed by current practice. We motivate our work with an example from swarm robotics and define a compositional CSP-based discrete timed semantics suitable for refinement. Our results support verification and, importantly, enable rigorous connection with sound simulations and deployments.</p

    Comparative Analysis of Acinetobacters: Three Genomes for Three Lifestyles

    Get PDF
    Acinetobacter baumannii is the source of numerous nosocomial infections in humans and therefore deserves close attention as multidrug or even pandrug resistant strains are increasingly being identified worldwide. Here we report the comparison of two newly sequenced genomes of A. baumannii. The human isolate A. baumannii AYE is multidrug resistant whereas strain SDF, which was isolated from body lice, is antibiotic susceptible. As reference for comparison in this analysis, the genome of the soil-living bacterium A. baylyi strain ADP1 was used. The most interesting dissimilarities we observed were that i) whereas strain AYE and A. baylyi genomes harbored very few Insertion Sequence elements which could promote expression of downstream genes, strain SDF sequence contains several hundred of them that have played a crucial role in its genome reduction (gene disruptions and simple DNA loss); ii) strain SDF has low catabolic capacities compared to strain AYE. Interestingly, the latter has even higher catabolic capacities than A. baylyi which has already been reported as a very nutritionally versatile organism. This metabolic performance could explain the persistence of A. baumannii nosocomial strains in environments where nutrients are scarce; iii) several processes known to play a key role during host infection (biofilm formation, iron uptake, quorum sensing, virulence factors) were either different or absent, the best example of which is iron uptake. Indeed, strain AYE and A. baylyi use siderophore-based systems to scavenge iron from the environment whereas strain SDF uses an alternate system similar to the Haem Acquisition System (HAS). Taken together, all these observations suggest that the genome contents of the 3 Acinetobacters compared are partly shaped by life in distinct ecological niches: human (and more largely hospital environment), louse, soil

    The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    Get PDF
    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi
    • …
    corecore