16 research outputs found

    Brief Consent Methods Enable Rapid Enrollment in Acute Stroke Trial: Results From the TICH-2 Randomized Controlled Trial

    Get PDF
    BACKGROUND AND PURPOSE: Seeking consent rapidly in acute stroke trials is crucial as interventions are time sensitive. We explored the association between consent pathways and time to enrollment in the TICH-2 (Tranexamic Acid in Intracerebral Haemorrhage-2) randomized controlled trial. METHODS: Consent was provided by patients or by a relative or an independent doctor in incapacitated patients, using a 1-stage (full written consent) or 2-stage (initial brief consent followed by full written consent post-randomization) approach. The computed tomography-to-randomization time according to consent pathways was compared using the Kruskal-Wallis test. Multivariable logistic regression was performed to identify variables associated with onset-to-randomization time of ≤3 hours. RESULTS: Of 2325 patients, 817 (35%) gave self-consent using 1-stage (557; 68%) or 2-stage consent (260; 32%). For 1507 (65%), consent was provided by a relative (1 stage, 996 [66%]; 2 stage, 323 [21%]) or a doctor (all 2-stage, 188 [12%]). One patient did not record prerandomization consent, with written consent obtained subsequently. The median (interquartile range) computed tomography-to-randomization time was 55 (38-93) minutes for doctor consent, 55 (37-95) minutes for 2-stage patient, 69 (43-110) minutes for 2-stage relative, 75 (48-124) minutes for 1-stage patient, and 90 (56-155) minutes for 1-stage relative consents (P<0.001). Two-stage consent was associated with onset-to-randomization time of ≤3 hours compared with 1-stage consent (adjusted odds ratio, 1.9 [95% CI, 1.5-2.4]). Doctor consent increased the odds (adjusted odds ratio, 2.3 [1.5-3.5]) while relative consent reduced the odds of randomization ≤3 hours (adjusted odds ratio, 0.10 [0.03-0.34]) compared with patient consent. Only 2 of 771 patients (0.3%) in the 2-stage pathways withdrew consent when full consent was sought later. Two-stage consent process did not result in higher withdrawal rates or loss to follow-up. CONCLUSIONS: The use of initial brief consent was associated with shorter times to enrollment, while maintaining good participant retention. Seeking written consent from relatives was associated with significant delays. Registration: URL: https://www.isrctn.com; Unique identifier: ISRCTN93732214

    Predictive value of S100-B and copeptin for outcomes following seizure: the BISTRO International Cohort Study.

    Get PDF
    OBJECTIVE: To evaluate the performance of S100-B protein and copeptin, in addition to clinical variables, in predicting outcomes of patients attending the emergency department (ED) following a seizure. METHODS: We prospectively included adult patients presented with an acute seizure, in four EDs in France and the United Kingdom. Participants were followed up for 28 days. The primary endpoint was a composite of seizure recurrence, all-cause mortality, hospitalization or rehospitalisation, or return visit in the ED within seven days. RESULTS: Among the 389 participants included in the analysis, 156 (40%) experienced the primary endpoint within seven days and 195 (54%) at 28 days. Mean levels of both S100-B (0.11 μg/l [95% CI 0.07-0.20] vs 0.09 μg/l [0.07-0.14]) and copeptin (23 pmol/l [9-104] vs 17 pmol/l [8-43]) were higher in participants meeting the primary endpoint. However, both biomarkers were poorly predictive of the primary outcome with a respective area under the receiving operator characteristic curve of 0.57 [0.51-0.64] and 0.59 [0.54-0.64]. Multivariable logistic regression analysis identified higher age (odds ratio [OR] 1.3 per decade [1.1-1.5]), provoked seizure (OR 4.93 [2.5-9.8]), complex partial seizure (OR 4.09 [1.8-9.1]) and first seizure (OR 1.83 [1.1-3.0]) as independent predictors of the primary outcome. A second regression analysis including the biomarkers showed no additional predictive benefit (S100-B OR 3.89 [0.80-18.9] copeptin OR 1 [1.00-1.00]). CONCLUSION: The plasma biomarkers S100-B and copeptin did not improve prediction of poor outcome following seizure. Higher age, a first seizure, a provoked seizure and a partial complex seizure are independently associated with adverse outcomes

    Copeptin for risk stratification in non-traumatic headache in the emergency setting: a prospective multicenter observational cohort study

    Get PDF
    In the emergency setting, non-traumatic headache is a benign symptom in 80% of cases, but serious underlying conditions need to be ruled out. Copeptin improves risk stratification in several acute diseases. Herein, we investigated the value of copeptin to discriminate between serious secondary headache and benign headache forms in the emergency setting.; Patients presenting with acute non-traumatic headache were prospectively enrolled into an observational cohort study. Copeptin was measured upon presentation to the emergency department. Primary endpoint was serious secondary headache defined by a neurologic cause requiring immediate treatment of the underlying disease. Secondary endpoint was the combination of mortality and hospitalization within 3 months. Two board-certified neurologist blinded to copeptin levels verified the endpoints after a structured 3-month-telephone interview.; Of the 391 patients included, 75 (19%) had a serious secondary headache. Copeptin was associated with serious secondary headache (OR 2.03, 95%CI 1.52-2.70, p &lt; 0.0001). Area under the curve (AUC) for copeptin to identify the primary endpoint was 0.70 (0.63-0.76). After adjusting for age &gt; 50, focal-neurological abnormalities, and thunderclap onset of symptoms, copeptin remained an independent predictive factor for serious secondary headache (OR 1.74, 95%CI 1.26-2.39, p = 0.001). Moreover, copeptin improved the AUC of the multivariate logistic clinical model (p-LR-test &lt; 0.001). Even though copeptin values were higher in patients reaching the secondary endpoint, this association was not significant in multivariate logistic regression.; Copeptin was independently associated with serious secondary headache as compared to benign headaches forms. Copeptin may be a promising novel blood biomarker that should be further validated to rule out serious secondary headache in the emergency department.; Study Registration on 08/02/2010 as NCT01174901 at clinicaltrials.gov

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Brief Consent Methods Enable Rapid Enrollment in Acute Stroke Trial: Results From the TICH-2 Randomized Controlled Trial.

    Get PDF
    BACKGROUND AND PURPOSE Seeking consent rapidly in acute stroke trials is crucial as interventions are time sensitive. We explored the association between consent pathways and time to enrollment in the TICH-2 (Tranexamic Acid in Intracerebral Haemorrhage-2) randomized controlled trial. METHODS Consent was provided by patients or by a relative or an independent doctor in incapacitated patients, using a 1-stage (full written consent) or 2-stage (initial brief consent followed by full written consent post-randomization) approach. The computed tomography-to-randomization time according to consent pathways was compared using the Kruskal-Wallis test. Multivariable logistic regression was performed to identify variables associated with onset-to-randomization time of ≤3 hours. RESULTS Of 2325 patients, 817 (35%) gave self-consent using 1-stage (557; 68%) or 2-stage consent (260; 32%). For 1507 (65%), consent was provided by a relative (1 stage, 996 [66%]; 2 stage, 323 [21%]) or a doctor (all 2-stage, 188 [12%]). One patient did not record prerandomization consent, with written consent obtained subsequently. The median (interquartile range) computed tomography-to-randomization time was 55 (38-93) minutes for doctor consent, 55 (37-95) minutes for 2-stage patient, 69 (43-110) minutes for 2-stage relative, 75 (48-124) minutes for 1-stage patient, and 90 (56-155) minutes for 1-stage relative consents (<0.001). Two-stage consent was associated with onset-to-randomization time of ≤3 hours compared with 1-stage consent (adjusted odds ratio, 1.9 [95% CI, 1.5-2.4]). Doctor consent increased the odds (adjusted odds ratio, 2.3 [1.5-3.5]) while relative consent reduced the odds of randomization ≤3 hours (adjusted odds ratio, 0.10 [0.03-0.34]) compared with patient consent. Only 2 of 771 patients (0.3%) in the 2-stage pathways withdrew consent when full consent was sought later. Two-stage consent process did not result in higher withdrawal rates or loss to follow-up. CONCLUSIONS The use of initial brief consent was associated with shorter times to enrollment, while maintaining good participant retention. Seeking written consent from relatives was associated with significant delays. Registration: URL: https://www.isrctn.com; Unique identifier: ISRCTN93732214

    Early measurement of interleukin-10 predicts the absence of CT scan lesions in mild traumatic brain injury

    Get PDF
    Traumatic brain injury is a common event where 70%-90% will be classified as mild TBI (mTBI). Among these, only 10% will have a brain lesion visible via CT scan. A triage biomarker would help clinicians to identify patients with mTBI who are at risk of developing a brain lesion and require a CT scan. The brain cells damaged by the shearing, tearing and stretching of a TBI event set off inflammation cascades. These cause altered concentrations of a high number of both pro-inflammatory and anti-inflammatory proteins. This study aimed to discover a novel diagnostic biomarker of mTBI by investigating a broad panel of inflammation biomarkers and their capacity to correctly identify CT-positive and CT-negative patients. Patients enrolled in this study had been diagnosed with mTBI, had a GCS score of 15 and suffered from at least one clinical symptom. There were nine patients in the discovery group, 45 for verification, and 133 mTBI patients from two different European sites in the validation cohort. All patients gave blood samples, underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. The ability of each protein to classify patients was evaluated with sensitivity set at 100%. Three of the 92 inflammation proteins screened-MCP-1, MIP-1alpha and IL-10 -were further investigated in the verification group, and at 100% sensitivity their specificities reached 7%, 0% and 31%, respectively. IL-10 was validated on a larger cohort in comparison to the most studied mTBI diagnostic triage protein to date, S100B. Levels of both proteins were significantly higher in CT-positive than in CT-negative patients (p < 0.001). S100B's specificity at 100% sensitivity was 18% (95% CI 10.8-25.2), whereas IL-10 reached a specificity of 27% (95% CI 18.9-35.1). These results showed that IL-10 might be an interesting and clinically useful diagnostic tool, capable of differentiating between CT-positive and CT-negative mTBI patients
    corecore