2,042 research outputs found

    Advances in the numerical treatment of grain-boundary migration: Coupling with mass transport and mechanics

    Full text link
    This work is based upon a coupled, lattice-based continuum formulation that was previously applied to problems involving strong coupling between mechanics and mass transport; e.g. diffusional creep and electromigration. Here we discuss an enhancement of this formulation to account for migrating grain boundaries. The level set method is used to model grain-boundary migration in an Eulerian framework where a grain boundary is represented as the zero level set of an evolving higher-dimensional function. This approach can easily be generalized to model other problems involving migrating interfaces; e.g. void evolution and free-surface morphology evolution. The level-set equation is recast in a remarkably simple form which obviates the need for spatial stabilization techniques. This simplified level-set formulation makes use of velocity extension and field re-initialization techniques. In addition, a least-squares smoothing technique is used to compute the local curvature of a grain boundary directly from the level-set field without resorting to higher-order interpolation. A notable feature is that the coupling between mass transport, mechanics and grain-boundary migration is fully accounted for. The complexities associated with this coupling are highlighted and the operator-split algorithm used to solve the coupled equations is described.Comment: 28 pages, 9 figures, LaTeX; Accepted for publication in Computer Methods in Applied Mechanics and Engineering. [Style and formatting modifications made, references added.

    Prospects for improving the representation of coastal and shelf seas in global ocean models

    Get PDF
    Accurately representing coastal and shelf seas in global ocean models represents one of the grand challenges of Earth system science. They are regions of immense societal importance through the goods and services they provide, hazards they pose and their role in global-scale processes and cycles, e.g. carbon fluxes and dense water formation. However, they are poorly represented in the current generation of global ocean models. In this contribution, we aim to briefly characterise the problem, and then to identify the important physical processes, and their scales, needed to address this issue in the context of the options available to resolve these scales globally and the evolving computational landscape. We find barotropic and topographic scales are well resolved by the current state-of-the-art model resolutions, e.g. nominal 1∕12°, and still reasonably well resolved at 1∕4°; here, the focus is on process representation. We identify tides, vertical coordinates, river inflows and mixing schemes as four areas where modelling approaches can readily be transferred from regional to global modelling with substantial benefit. In terms of finer-scale processes, we find that a 1∕12° global model resolves the first baroclinic Rossby radius for only  ∌ 8% of regions  < 500m deep, but this increases to  ∌ 70% for a 1∕72° model, so resolving scales globally requires substantially finer resolution than the current state of the art. We quantify the benefit of improved resolution and process representation using 1∕12° global- and basin-scale northern North Atlantic nucleus for a European model of the ocean (NEMO) simulations; the latter includes tides and a k-Δ vertical mixing scheme. These are compared with global stratification observations and 19 models from CMIP5. In terms of correlation and basin-wide rms error, the high-resolution models outperform all these CMIP5 models. The model with tides shows improved seasonal cycles compared to the high-resolution model without tides. The benefits of resolution are particularly apparent in eastern boundary upwelling zones. To explore the balance between the size of a globally refined model and that of multiscale modelling options (e.g. finite element, finite volume or a two-way nesting approach), we consider a simple scale analysis and a conceptual grid refining approach. We put this analysis in the context of evolving computer systems, discussing model turnaround time, scalability and resource costs. Using a simple cost model compared to a reference configuration (taken to be a 1∕4° global model in 2011) and the increasing performance of the UK Research Councils' computer facility, we estimate an unstructured mesh multiscale approach, resolving process scales down to 1.5km, would use a comparable share of the computer resource by 2021, the two-way nested multiscale approach by 2022, and a 1∕72° global model by 2026. However, we also note that a 1∕12° global model would not have a comparable computational cost to a 1° global model in 2017 until 2027. Hence, we conclude that for computationally expensive models (e.g. for oceanographic research or operational oceanography), resolving scales to  ∌ 1.5km would be routinely practical in about a decade given substantial effort on numerical and computational development. For complex Earth system models, this extends to about 2 decades, suggesting the focus here needs to be on improved process parameterisation to meet these challenges

    Colonic epithelial cathelicidin (LL-37) expression intensity is associated with progression of colorectal cancer and presence of CD8+ T cell infiltrate

    Get PDF
    Colorectal cancer (CRC) remains a leading cause of cancer mortality. Here, we define the colonic epithelial expression of cathelicidin (LL-37) in CRC. Cathelicidin exerts pleotropic effects including anti-microbial and immunoregulatory functions. Genetic knockout of cathelicidin led to increased size and number of colorectal tumours in the azoxymethane-induced murine model of CRC. We aimed to translate this to human disease. The expression of LL-37 in a large (n = 650) fully characterised cohort of treatment-naĂŻve primary human colorectal tumours and 50 matched normal mucosa samples with associated clinical and pathological data (patient age, gender, tumour site, tumour stage [UICC], presence or absence of extra-mural vascular invasion, tumour differentiation, mismatch repair protein status, and survival to 18 years) was assessed by immunohistochemistry. The biological consequences of LL-37 expression on the epithelial barrier and immune cell phenotype were assessed using targeted quantitative PCR gene expression of epithelial permeability (CLDN2, CLDN4, OCLN, CDH1, and TJP1) and cytokine (IL-1ÎČ, IL-18, IL-33, IL-10, IL-22, and IL-27) genes in a human colon organoid model, and CD3+ , CD4+ , and CD8+ lymphocyte phenotyping by immunohistochemistry, respectively. Our data reveal that loss of cathelicidin is associated with human CRC progression, with a switch in expression intensity an early feature of CRC. LL-37 expression intensity is associated with CD8+ T cell infiltrate, influenced by tumour characteristics including mismatch repair protein status. There was no effect on epithelial barrier gene expression. These data offer novel insights into the contribution of LL-37 to the pathogenesis of CRC and as a therapeutic molecule

    An HDG Method for Dirichlet Boundary Control of Convection Dominated Diffusion PDE

    Full text link
    We first propose a hybridizable discontinuous Galerkin (HDG) method to approximate the solution of a \emph{convection dominated} Dirichlet boundary control problem. Dirichlet boundary control problems and convection dominated problems are each very challenging numerically due to solutions with low regularity and sharp layers, respectively. Although there are some numerical analysis works in the literature on \emph{diffusion dominated} convection diffusion Dirichlet boundary control problems, we are not aware of any existing numerical analysis works for convection dominated boundary control problems. Moreover, the existing numerical analysis techniques for convection dominated PDEs are not directly applicable for the Dirichlet boundary control problem because of the low regularity solutions. In this work, we obtain an optimal a priori error estimate for the control under some conditions on the domain and the desired state. We also present some numerical experiments to illustrate the performance of the HDG method for convection dominated Dirichlet boundary control problems

    SARS-CoV-2 Viral Load in Saliva Rises Gradually and to Moderate Levels in Some Humans

    Get PDF
    Transmission of SARS-CoV-2 in community settings often occurs before symptom onset, therefore testing strategies that can reliably detect people in the early phase of infection are urgently needed. Early detection of SARS-CoV-2 infection is especially critical to protect vulnerable populations who require frequent interactions with caretakers. Rapid COVID-19 tests have been proposed as an attractive strategy for surveillance, however a limitation of most rapid tests is their low sensitivity. Low-sensitivity tests are comparable to high sensitivity tests in detecting early infections when two assumptions are met: (1) viral load rises quickly (within hours) after infection and (2) viral load reaches and sustains high levels (>10⁔ - 10⁶ RNA copies/mL). However, there are no human data testing these assumptions. In this study, we document a case of presymptomatic household transmission from a healthy college student to his brother and father. Participants prospectively provided twice-daily saliva samples. Samples were analyzed by RT-qPCR and RT-ddPCR and we measured the complete viral load profiles throughout the course of infection of the brother and father. This study provides evidence that in at least some human cases of SARS-CoV-2, viral load rises slowly (over days, not hours) and not to such high levels to be detectable reliably by any low-sensitivity test. Additional viral load profiles from different samples types across a broad demographic must be obtained to describe the early phase of infection and determine which testing strategies will be most effective for identifying SARS-CoV-2 infection before transmission can occur

    Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method

    Get PDF
    The complexity and heterogeneity of bone tissue require a multiscale modelling to understand its mechanical behaviour and its remodelling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network computation and homogenisation equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained neural network simulation. Finite element (FE) calculation is performed at nanoscopic levels to provide a database to train an in-house neural network program; (iii) in steps 2 to 10 from fibril to continuum cortical bone tissue, homogenisation equations are used to perform the computation at the higher scales. The neural network outputs (elastic properties of the microfibril) are used as inputs for the homogenisation computation to determine the properties of mineralised collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modelling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modelling. Good agreement was obtained between our predicted results and literature data.Comment: 2

    Proactive and politically skilled professionals: What is the relationship with affective occupational commitment?

    Get PDF
    The aim of this study is to extend research on employee affective commitment in three ways: (1) instead of organizational commitment the focus is on occupational commitment; (2) the role of proactive personality on affective occupational commitment is examined; and (3) occupational satisfaction is examined as a mediator and political skills as moderator in the relationship between proactive personality and affective occupational commitment. Two connected studies, one in a hospital located in the private sector and one in a university located in the public sector, are carried out in Pakistan, drawing on a total sample of over 400 employees. The results show that proactive personality is positively related to affective occupational commitment, and that occupational satisfaction partly mediates the relationship between proactive personality and affective occupational commitment. No effect is found for a moderator effect of political skills in the relationship between proactive personality and affective occupational commitment. Political skills however moderate the relationship between proactive personality and affective organizational commitment

    The adhesive properties of pyridine-terminated self-assembled monolayers

    Get PDF
    The atomic force microscopy (AFM) adhesion force behaviour and contact angle titration behaviour of self-assembled monolayers (SAMs) presenting surface pyridine and substituted pyridine moieties has been investigated as a function of pH and electrolyte concentration. The pKas of the pyridine moieties were modified through the incorporation of fluorine, chlorine and bromine substituents in the pyridyl ring. Contact angle titration and AFM adhesion force measurements were performed using aqueous phosphate buffered saline solutions over the pH range 3–9, and at concentrations of 150 mM and 0.1 mM. AFM adhesion force measurements were performed using a clean Si3N4 pyramidal-tipped AFM cantilever
    • 

    corecore