22 research outputs found

    Growth and structure of singly oriented single-layer tungsten disulfide on Au(111)

    No full text
    © 2019 American Physical Society. A singly oriented, single layer of tungsten disulfide (WS2) was epitaxially grown on Au(111) and characterized at the nanoscale by combining photoelectron spectroscopy, photoelectron diffraction, and low-energy electron microscopy. Fast x-ray photoelectron spectroscopy revealed that the growth of a single crystalline orientation is triggered by choosing a low W evaporation rate and performing the process with a high temperature of the substrate. Information about the single orientation of the layer was obtained by acquiring x-ray photoelectron diffraction patterns, revealing a 1H polytype for the WS2 layer and, moreover, determining the structural parameters and registry with the substrate. The distribution, size, and orientation of the WS2 layer were further ascertained by low-energy electron microscopy.status: publishe

    Low-Energy Electron Potentiometry: Contactless Imaging of Charge Transport on the Nanoscale

    Get PDF
    Charge transport measurements form an essential tool in condensed matter physics. The usual approach is to contact a sample by two or four probes, measure the resistance and derive the resistivity, assuming homogeneity within the sample. A more thorough understanding, however, requires knowledge of local resistivity variations. Spatially resolved information is particularly important when studying novel materials like topological insulators, where the current is localized at the edges, or quasi-two-dimensional (2D) systems, where small-scale variations can determine global properties. Here, we demonstrate a new method to determine spatially-resolved voltage maps of current-carrying samples. This technique is based on low-energy electron microscopy (LEEM) and is therefore quick and non-invasive. It makes use of resonance-induced contrast, which strongly depends on the local potential. We demonstrate our method using single to triple layer graphene. However, it is straightforwardly extendable to other quasi-2D systems, most prominently to the upcoming class of layered van der Waals materials

    Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy

    Get PDF
    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.We are grateful to Marcel Hesselberth, Daan Boltje and Ruud van Egmond for technical assistance. We thank Charles Kane for fruitful discussions and Kenji Watanabe for supplying the hBN base crystal. This work was supported by the Spanish Ministry of Economy and Competitiveness MINECO (project number FIS2013-48286-C2-1-P) and the Netherlands Organization for Scientific Research (NWO) via an NWO-Groot grant ('ESCHER'), a VIDI grant (680-47-502, S.J. v.d.M.), a VENI grant (680-47-447, J.J.) and by the FOM foundation via the 'Physics in 1D' programme. C.R.D. acknowledges support from NSF grant DMR-1463465

    Nanoscale measurements of unoccupied band dispersion in few-layer graphene

    Get PDF
    The properties of any material are fundamentally determined by its electronic band structure. Each band represents a series of allowed states inside a material, relating electron energy and momentum. The occupied bands, that is, the filled electron states below the Fermi level, can be routinely measured. However, it is remarkably difficult to characterize the empty part of the band structure experimentally. Here, we present direct measurements of unoccupied bands of monolayer, bilayer and trilayer graphene. To obtain these, we introduce a technique based on low-energy electron microscopy. It relies on the dependence of the electron reflectivity on incidence angle and energy and has a spatial resolution ∼10 nm. The method can be easily applied to other nanomaterials such as van der Waals structures that are available in small crystals only
    corecore