29 research outputs found

    Proceedings of Abstracts, School of Physics, Engineering and Computer Science Research Conference 2022

    Get PDF
    © 2022 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Plenary by Prof. Timothy Foat, ‘Indoor dispersion at Dstl and its recent application to COVID-19 transmission’ is © Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] present proceedings record the abstracts submitted and accepted for presentation at SPECS 2022, the second edition of the School of Physics, Engineering and Computer Science Research Conference that took place online, the 12th April 2022

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube

    Toll-like receptors TLR2 and TLR4 block the replication of pancreatic β cells in diet-induced obesity

    No full text
    Consumption of a high-energy Western diet triggers mild adaptive β cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of β cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of β cells, but not that of α cells, leading to enlarged β cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of β cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse β cell failure in patients with diabetes.</p

    Toll-like receptors 2 and 4 control adaptive β-cell expansion in diet-induced obesity

    No full text
    Adult pancreatic β cells are refractory to proliferation, a roadblock for the treatment of insulin-deficient diabetes. Consumption of energy-dense Western or high-fat diet (HFD) triggers mild adaptive β cell mass expansion to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. Here we show that Toll-like receptors (TLR) 2/TLR4 act as molecular “brakes” for diet-induced β cell replication in both mice and humans. The combined loss of TLR2/TLR4, but not individually, dramatically increases facultative β, not α, cell replication, leading to progressively enlarged islet mass and hyperinsulinemia in diet-induced obesity. Mechanistically, loss of TLR2/TLR4 increases β cell proliferation and nuclear abundance of Cyclin D2 and CDK4 in an extracellular signal-regulated kinase (ERK)-dependent manner. These data reveal a novel mechanism governing adaptive β cell mass expansion in diet-induced obesity and suggest that selective targeting of TLR2/TLR4 pathways may hold promise for reversing β cell failure in diabetic patients

    Toll-like receptors 2 and 4 control adaptive β-cell expansion in diet-induced obesity

    No full text
    Adult pancreatic β cells are refractory to proliferation, a roadblock for the treatment of insulin-deficient diabetes. Consumption of energy-dense Western or high-fat diet (HFD) triggers mild adaptive β cell mass expansion to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. Here we show that Toll-like receptors (TLR) 2/TLR4 act as molecular “brakes” for diet-induced β cell replication in both mice and humans. The combined loss of TLR2/TLR4, but not individually, dramatically increases facultative β, not α, cell replication, leading to progressively enlarged islet mass and hyperinsulinemia in diet-induced obesity. Mechanistically, loss of TLR2/TLR4 increases β cell proliferation and nuclear abundance of Cyclin D2 and CDK4 in an extracellular signal-regulated kinase (ERK)-dependent manner. These data reveal a novel mechanism governing adaptive β cell mass expansion in diet-induced obesity and suggest that selective targeting of TLR2/TLR4 pathways may hold promise for reversing β cell failure in diabetic patients

    Nga-subduction research program

    No full text
    This paper provides an overview of NGA-Sub, a large multidisciplinary community-based research initiative to develop a comprehensive ground-motion database and multiple ground-motion models (GMMs) for subduction events. In the NGA-Sub project, we developed a database of ground motions recorded in worldwide subduction events. The database includes the processed recordings and supporting source, path, and site metadata from Japan, Taiwan, the US Pacific Northwest, Alaska, Latin America (including Mexico, Peru and Chile), and New Zealand. The NGASub database includes 1,570 events with moment magnitudes ranging from 4.0 to 9.1. The subduction events are classified as interface, intraslab, or outer-rise events. The NGA-Sub ground-motion database has over 214,000 individual ground-motion components. This is by far the largest ground-motion database that we have ever developed in any NGA project. Pseudo-spectral acceleration as well as Fourier amplitude spectra for frequencies from 0.1 to 100 Hz have been included in the database. Multiple GMMs are developed using the empirical ground-motion database and the supporting ground-motion simulations. The scope of the NGA-Sub GMMs is to develop models for horizontal components of ground motion for 5% damped pseudo-acceleration response spectra for period range of 0.01 to 10 sec. Following the tradition of previous NGA projects, the GMM modeling teams as well as database developers have had continuous technical interactions which resulted in a higher quality of the final products than each researcher or oneteam group could achieve individually. An overview of the NGA-Sub project is presented in this paper.,
    corecore