81 research outputs found
The effect of polymer/plasticiser ratio in film forming solutions on the properties of chitosan films
In this work physical-chemical properties of chitosan/ glycerol film forming solutions (FFS) and the resulting films were analysed. Solutions were prepared using different concentrations of plasticising agent (glycerol) and chitosan. Films were produced by solvent casting and equilibrated in a controlled atmosphere. FFS water activity and rheological behaviour were determined. Films water content, solubility, water vapour and oxygen permeabilities, thickness, and mechanical and thermal properties were determined. Fourier transform infrared (FTIR) spectroscopy was also used to study the chitosan/glycerol interactions.
Results demonstrate that FFS chitosan concentration influenced solutions consistency coefficient and this was related with differences in films water retention and structure. Plasticiser addition led to an increase in films moisture content, solubility and water vapour permeability, water affinity and structural changes. Films thermo-mechanical properties are significantly affected by both chitosan and glycerol addition. FTIR experiments confirm these results.
This work highlights the importance of glycerol and water plasticisation in films properties.This work was supported by National Funds from FCT - Fundacao para a Ciencia e a Tecnologia, through project PEst-OE/EQB/LA0016/2011.Authors Joana F. Fundo, Andrea C. Galvis-Sanchez and Mafalda A. C. Quintas acknowledge FCT for research grants SFRH/ BD / 62176 / 2009, SFRH/BPD/37890/2007 and SFRH / BPD / 41715 / 2007, respectively
Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2
Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by
driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and
seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for
possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2
gradient ranging from ,0.5–250 mmol kg21 (i.e. ,20–6000 matm pCO2) at three different temperatures (i.e. 10, 15, 20uC for
E. huxleyi and 15, 20, 25uC for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth,
photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and
production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for
growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate
temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high
temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and
carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean
acidification at a given temperature can be negative, neutral or positive depending on that strain’s temperature optimum.
This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when
interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of
changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the
future ocean
Effects of Total Resources, Resource Ratios, and Species Richness on Algal Productivity and Evenness at Both Metacommunity and Local Scales
The study of the interrelationship between productivity and biodiversity is a major research field in ecology. Theory predicts that if essential resources are heterogeneously distributed across a metacommunity, single species may dominate productivity in individual metacommunity patches, but a mixture of species will maximize productivity across the whole metacommunity. It also predicts that a balanced supply of resources within local patches should favor species coexistence, whereas resource imbalance would favor the dominance of one species. We performed an experiment with five freshwater algal species to study the effects of total supply of resources, their ratios, and species richness on biovolume production and evenness at the scale of both local patches and metacommunities. Generally, algal biovolume increased, whereas algal resource use efficiency (RUE) and evenness decreased with increasing total supply of resources in mixed communities containing all five species. In contrast to predictions for biovolume production, the species mixtures did not outperform all monocultures at the scale of metacommunities. In other words, we observed no general transgressive overyielding. However, RUE was always higher in mixtures than predicted from monocultures, and analyses indicate that resource partitioning or facilitation in mixtures resulted in higher-than-expected productivity at high resource supply. Contrasting our predictions for the local scale, balanced supply of resources did not generally favor higher local evenness, however lowest evenness was confined to patches with the most imbalanced supply. Thus, our study provides mixed support for recent theoretical advancements to understand biodiversity-productivity relationships
Cd2+ Toxicity to a Green Alga Chlamydomonas reinhardtii as Influenced by Its Adsorption on TiO2 Engineered Nanoparticles
In the present study, Cd2+ adsorption on polyacrylate-coated TiO2 engineered nanoparticles (TiO2-ENs) and its effect on the bioavailability as well as toxicity of Cd2+ to a green alga Chlamydomonas reinhardtii were investigated. TiO2-ENs could be well dispersed in the experimental medium and their pHpzc is approximately 2. There was a quick adsorption of Cd2+ on TiO2-ENs and a steady state was reached within 30 min. A pseudo-first order kinetics was found for the time-related changes in the amount of Cd2+ complexed with TiO2-ENs. At equilibrium, Cd2+ adsorption followed the Langmuir isotherm with the maximum binding capacity 31.9, 177.1, and 242.2 mg/g when the TiO2-EN concentration was 1, 10, and 100 mg/l, respectively. On the other hand, Cd2+ toxicity was alleviated in the presence of TiO2-ENs. Algal growth was less suppressed in treatments with comparable total Cd2+ concentration but more TiO2-ENs. However, such toxicity difference disappeared and all the data points could be fitted to a single Logistic dose-response curve when cell growth inhibition was plotted against the free Cd2+ concentration. No detectable amount of TiO2-ENs was found to be associated with the algal cells. Therefore, TiO2-ENs could reduce the free Cd2+ concentration in the toxicity media, which further lowered its bioavailability and toxicity to C. reinhardtii
Deep-Sea Nematodes Actively Colonise Sediments, Irrespective of the Presence of a Pulse of Organic Matter: Results from an In-Situ Experiment
A colonisation experiment was performed in situ at 2500 m water depth at the
Arctic deep-sea long-term observatory HAUSGARTEN to determine the response of
deep-sea nematodes to disturbed, newly available patches, enriched with organic
matter. Cylindrical tubes,laterally covered with a 500 µm mesh, were
filled with azoic deep-sea sediment and 13C-labelled food sources
(diatoms and bacteria). After 10 days of incubation the tubes were analysed for
nematode response in terms of colonisation and uptake. Nematodes actively
colonised the tubes,however with densities that only accounted for a maximum of
2.13% (51 ind.10 cm−2) of the ambient nematode
assemblages. Densities did not differ according to the presence or absence of
organic matter, nor according to the type of organic matter added. The fact that
the organic matter did not function as an attractant to nematodes was confirmed
by the absence of notable 13C assimilation by the colonising
nematodes. Overall, colonisationappears to be a process that yields reproducible
abundance and diversity patterns, with certain taxa showing more efficiency.
Together with the high variability between the colonising nematode assemblages,
this lends experimental support to the existence of a spatio-temporal mosaic
that emerges from highly localised, partially stochastic community dynamics
Sustainable Sources of Biomass for Bioremediation of Heavy Metals in Waste Water Derived from Coal-Fired Power Generation
Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the biomass of 1543 mg.kg−1 DW and 137 mg.kg−1 DW. Growth rates were reduced by more than half in neat Ash Dam water than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application of waste water bioremediation
Metabolic cutis laxa syndromes
Cutis laxa is a rare skin disorder characterized by wrinkled, redundant, inelastic and sagging skin due to defective synthesis of elastic fibers and other proteins of the extracellular matrix. Wrinkled, inelastic skin occurs in many cases as an acquired condition. Syndromic forms of cutis laxa, however, are caused by diverse genetic defects, mostly coding for structural extracellular matrix proteins. Surprisingly a number of metabolic disorders have been also found to be associated with inherited cutis laxa. Menkes disease was the first metabolic disease reported with old-looking, wrinkled skin. Cutis laxa has recently been found in patients with abnormal glycosylation. The discovery of the COG7 defect in patients with wrinkled, inelastic skin was the first genetic link with the Congenital Disorders of Glycosylation (CDG). Since then several inborn errors of metabolism with cutis laxa have been described with variable severity. These include P5CS, ATP6V0A2-CDG and PYCR1 defects. In spite of the evolving number of cutis laxa-related diseases a large part of the cases remain genetically unsolved. In metabolic cutis laxa syndromes the clinical and laboratory features might partially overlap, however there are some distinct, discriminative features. In this review on metabolic diseases causing cutis laxa we offer a practical approach for the differential diagnosis of metabolic cutis laxa syndromes
Proteome changes driven by phosphorus deficiency and recovery in the brown tide-forming alga Aureococcus anophagefferens
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e28949, doi:10.1371/journal.pone.0028949.Shotgun mass spectrometry was used to detect proteins in the harmful alga, Aureococcus anophagefferens, and monitor their relative abundance across nutrient replete (control), phosphate-deficient (−P) and −P refed with phosphate (P-refed) conditions. Spectral counting techniques identified differentially abundant proteins and demonstrated that under phosphate deficiency, A. anophagefferens increases proteins involved in both inorganic and organic phosphorus (P) scavenging, including a phosphate transporter, 5′-nucleotidase, and alkaline phosphatase. Additionally, an increase in abundance of a sulfolipid biosynthesis protein was detected in −P and P-refed conditions. Analysis of the polar membrane lipids showed that cellular concentrations of the sulfolipid sulphoquinovosyldiacylglycerol (SQDG) were nearly two-fold greater in the −P condition versus the control condition, while cellular phospholipids were approximately 8-fold less. Transcript and protein abundances were more tightly coupled for gene products involved in P metabolism compared to those involved in a range of other metabolic functions. Comparison of protein abundances between the −P and P-refed conditions identified differences in the timing of protein degradation and turnover. This suggests that culture studies examining nutrient starvation responses will be valuable in interpreting protein abundance patterns for cellular nutritional status and history in metaproteomic datasets.Research for this work was supported by a National Oceanic and Atmospheric Administration ECOHAB grant (#NA09NOS4780206) and National Science Foundation grant (#OCE-0723667) and a STAR Research Assistance Agreement No. R-83041501-0 awarded by the U.S. Environmental Protection Agency. Further support came from the Woods Hole Coastal Ocean Institute. LLW was supported by a Environmental Protection Agency STAR Fellowship (#FP916901). EMB was supported by a National Science Foundation (NSF) Graduate Research Fellowship (#2007037200) and an Environmental Protection Agency STAR Fellowship (#F6E20324)
A Full Suite of Histone and Histone Modifying Genes Are Transcribed in the Dinoflagellate Lingulodinium
BACKGROUND: Dinoflagellates typically lack histones and nucleosomes are not observed in DNA spreads. However, recent studies have shown the presence of core histone mRNA sequences scattered among different dinoflagellate species. To date, the presence of all components required for manufacturing and modifying nucleosomes in a single dinoflagellate species has not been confirmed. METHODOLOGY AND RESULTS: Analysis of a Lingulodinium transcriptome obtained by Illumina sequencing of mRNA shows several different copies of each of the four core histones as well as a suite of histone modifying enzymes and histone chaperone proteins. Phylogenetic analysis shows one of each Lingulodinium histone copies belongs to the dinoflagellate clade while the second is more divergent and does not share a common ancestor. All histone mRNAs are in low abundance (roughly 25 times lower than higher plants) and transcript levels do not vary over the cell cycle. We also tested Lingulodinium extracts for histone proteins using immunoblotting and LC-MS/MS, but were unable to confirm histone expression at the protein level. CONCLUSION: We show that all core histone sequences are present in the Lingulodinium transcriptome. The conservation of these sequences, even though histone protein accumulation remains below currently detectable levels, strongly suggests dinoflagellates possess histones
Lack of Phylogeographic Structure in the Freshwater Cyanobacterium Microcystis aeruginosa Suggests Global Dispersal
Background : Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographic structuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography.
Methodology/Principal Findings : The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNA internal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS types were detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected.
Conclusions/Significance : The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution
- …
