109 research outputs found

    Histidine kinase two-component response regulators Ssk1, Skn7 and Rim15 differentially control growth, developmental and volatile organic compounds emissions as stress responses in Trichoderma atroviride

    Get PDF
    The Skn7, Ssk1 and Rim15 proteins are response regulators involved in osmotic, oxidative and nutritional stress in fungi. In order to verify the involvement of these genes in Trichoderma atroviride IMI206040’s growth, conidiation, direct antagonism against plant pathogens (Rhizoctonia solani and Sclerotinia sclerotiorum), production of volatile organic compounds (VOCs) with fungistatic effect, and interaction with plants (growth promotion), single mutants were generated, and the phenotypic patterns were analysed in comparison to the wild-type (wt) strain. The mutants were submitted to osmotic, oxidative, membrane and cell wall stress conditions in vitro. The Δskn7 and Δrim15 mutants did not show either significant differences at morphological level, or marked decreases in mycelial growth and conidiation in relation to wt, whereas Δssk1 had altered phenotypes in most conditions tested. The plant-growth promotion of Arabidopsis thaliana seedlings induced by VOCs was not quantitatively modified by any of the mutants in relation to the wt strain, although possible differences in secondary root hairs was noticed for Δrim15. The fungistatic activity was significantly altered for Δssk1 and Δrim15. Overall, the Δssk1 strain showed remarkable morphological differences, with decrease in mycelial growth and conidiation, being also affected in the antagonistic capacity against plant pathogens. The impacts demonstrated by the deletion of ssk1 suggest this gene has a relevant participation in the signalling response to different stresses in T. atroviride and in the interactive metabolism with phytopathogens and plants. On the other hand, unlike other fungal models, Skn7 did not appear to have a critical participation in the above-mentioned processes; Rim15 seemed to confirm its involvement in modulating cellular responses to nutritional status, although with a possible cross-talk with other cellular processes. Our results suggest that Ssk1 likely plays a key regulatory role, not only in basic metabolisms of T. atroviride, but also in biocontrol-related characteristics

    The Edinburgh Postnatal Depression Scale (EPDS): translation and validation study of the Iranian version

    Get PDF
    BACKGROUND: The Edinburgh Postnatal Depression Scale (EPDS) is a widely used instrument to measure postnatal depression. This study aimed to translate and to test the reliability and validity of the EPDS in Iran. METHODS: The English language version of the EPDS was translated into Persian (Iranian language) and was used in this study. The questionnaire was administered to a consecutive sample of 100 women with normal (n = 50) and caesarean section (n = 50) deliveries at two points in time: 6 to 8 weeks and 12 to 14 weeks after delivery. Statistical analysis was performed to test the reliability and validity of the EPDS. RESULTS: Overall 22% of women at time 1 and 18% at time 2 reported experiencing postpartum depression. In general, the Iranian version of the EPDS was found to be acceptable to almost all women. Cronbach's alpha coefficient (to test reliability) was found to be 0.77 at time 1 and 0.86 at time 2. In addition, test-rest reliability was performed and the intraclass correlation coefficient was found to be 0.80. Validity as performed using known groups comparison showed satisfactory results. The questionnaire discriminated well between sub-groups of women differing in mode of delivery in the expected direction. The factor analysis indicated a three-factor structure that jointly accounted for 58% of the variance. CONCLUSION: This preliminary validation study of the Iranian version of the EPDS proved that it is an acceptable, reliable and valid measure of postnatal depression. It seems that the EPDS not only measures postpartum depression but also may be measuring something more

    Seasonal drought limits tree species across the Neotropics

    Get PDF
    AcceptedArticle in Press© 2016 Nordic Society Oikos.Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions predicts a nested pattern of taxa distribution from wet to dry areas. However, this 'dry-tolerance' hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the 'dry tolerance' hypothesis has broad applicability in the world's most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region.This paper is a product of the RAINFOR and ATDN networks and of ForestPlots.net researchers (http://www.forestplots.net). RAINFOR and ForestPlots have been supported by a Gordon and Betty Moore Foundation grant, the European Union’s Seventh Framework Programme (283080, ‘GEOCARBON’; 282664, ‘AMAZALERT’); European Research Council (ERC) grant ‘Tropical Forests in the Changing Earth System’ (T-FORCES), and Natural Environment Research Council (NERC) Urgency Grant and NERC Consortium Grants ‘AMAZONICA’ (NE/F005806/1) and ‘TROBIT’ (NE/D005590/1). Additional funding for fieldwork was provided by Tropical Ecology Assessment and Monitoring (TEAM) Network, a collaboration among Conservation International, the Missouri Botanical Garden, the Smithsonian Institution, and the Wildlife Conservation Society. A.E.M. receives a PhD scholarship from the T-FORCES ERC grant. O.L.P. is supported by an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award. We thank Jon J. Lloyd, Chronis Tzedakis, David Galbraith, and two anonymous reviewers for helpful comments and Dylan Young for helping with the analyses. This study would not be possible without the extensive contributions of numerous field assistants and rural communities in the Neotropical forests. Alfredo Alarcón, Patricia Alvarez Loayza, Plínio Barbosa Camargo, Juan Carlos Licona, Alvaro Cogollo, Massiel Corrales Medina, Jose Daniel Soto, Gloria Gutierrez, Nestor Jaramillo Jarama, Laura Jessica Viscarra, Irina Mendoza Polo, Alexander Parada Gutierrez, Guido Pardo, Lourens Poorter, Adriana Prieto, Freddy Ramirez Arevalo, Agustín Rudas, Rebeca Sibler and Javier Silva Espejo additionally contributed data to this study though their RAINFOR participations. We further thank those colleagues no longer with us, Jean Pierre Veillon, Samuel Almeida, Sandra Patiño and Raimundo Saraiva. Many data come from Alwyn Gentry, whose example has inspired new generations to investigate the diversity of the Neotropics

    DNA Barcoding of Recently Diverged Species: Relative Performance of Matching Methods

    Get PDF
    Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a ‘barcode gap’ and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75%) than for older species (∼97%) (P<0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001). The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification

    Amazon tree dominance across forest strata

    Get PDF
    The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 ‘hyperdominant’ species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations
    corecore